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Abstract

Redevelopment is a major source of housing supply in dense cities, but it is spa-

tially concentrated and often associated with gentrification and displacement. This pa-

per studies the equilibrium consequences of redevelopment and of policies that restrict

it. We first empirically evaluate a teardown tax implemented in two Chicago neigh-

borhoods using a spatial difference-in-differences design and find that it substantially

reduced demolitions and modestly curbed displacement. We then develop a dynamic

general equilibrium model with forward-looking landlords who choose when to rede-

velop and heterogeneous households who choose across neighborhoods and vertically

differentiated housing units. Redevelopment affects income sorting across neighbor-

hoods and generates filtering dynamics over time. Model counterfactuals show that a

spatially targeted teardown tax preserves old, affordable housing in treated areas but

shifts redevelopment to untreated areas, raising rents there. The policy benefits low-

income households but harms middle- and high-income households, with the largest

losses for the middle. Land values fall in treated areas and rise elsewhere. We conclude

with a discussion of the policy implications of our findings.
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1 Introduction

Understanding housing supply is crucial for addressing the affordability challenges (Glaeser

and Gyourko, 2018). In dense urban areas, a major source of new housing supply is housing

redevelopment (McMillen and O’Sullivan, 2013; Baum-Snow and Han, 2024), which involves

replacing older, affordable housing with newer, high-quality housing. At the city level, in-

creasing supply of high-quality housing can have a “trickle-down” effect that improves hous-

ing affordability across all quality segments (Nathanson, 2025) and filter towards low-income

households over time (Rosenthal, 2014). However, as housing redevelopment tends to be

spatially concentrated (Munneke and Womack, 2015), it can also lead to neighborhood gen-

trification and displacement of local incumbents (Brueckner and Rosenthal, 2009; Guerrieri,

Hartley and Hurst, 2013). In response, many cities have adopted policies that explicitly re-

strict redevelopment.1 Despite the policy salience of this tension, the heterogeneous welfare

consequences of redevelopment across space, time, and households remain under-studied.

In this paper, we develop a dynamic general equilibrium model to study the welfare

effects of housing redevelopment. We embed the assignment framework (Määttänen and

Terviö, 2014; Landvoigt, Piazzesi and Schneider, 2015), which allows tractably matching be-

tween heterogeneous households and heterogeneous housing units within neighborhoods, into

a quantitative spatial model featuring income sorting across neighborhoods and endogenous

neighborhood amenities. The model also incorporates forward-looking redevelopment deci-

sions by landlords and quality depreciation over time. Taken together, these elements allow

us to comprehensively analyze the long-run, heterogeneous welfare effects of housing redevel-

opment and of policies that changes the housing quality distribution, such as teardown taxes

and public housing demolition.

We apply the model to analyze a housing demolition tax policy targeted at two Chicago

neighborhoods between 2021 and 2024. Our empirical analysis shows that the policy reduced

both teardowns and displacement of incumbent residents. We then use the model to eval-

uate a scaled-up version of the policy that targets all below-median-income neighborhoods

in Chicago. The counterfactuals reveal that, while the policy preserves affordable housing in

the targeted neighborhoods and benefits low-income households, it also induces substantial

redevelopment spillovers to untreated neighborhoods and generates heterogeneous welfare

effects across the households. Among renters, low-income households benefit from the pol-

icy, whereas middle- and high-income households are worse off as average housing quality

1For example, Chicago introduced a demolition surcharge and an anti-deconversion ordinance in two
neighborhoods. San Francisco imposes a high demolition fee and requires replacing rent-controlled units.
Seattle requires developers to either include affordable units or a contribute to a housing fund. More broadly,
lengthy and costly municipal permitting processes implicitly restrict redevelopment.
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decreases at the city level. In particular, the scarcity of high-quality housing has a positive,

trickle-down effect on the rent in the middle quality segment, yielding the largest welfare

losses for middle-income renters. Among homeowners, land values in treated neighborhoods

decline sharply as the tax erodes the option value of redevelopment, while land values in un-

treated neighborhoods rise as middle- and high-income households move in. We conclude that

a spatially targeted teardown tax can serve as a redistributive policy, albeit with substantial

unintended consequences.

We begin by empirically evaluating the teardown tax implemented in Chicago. In March

2021, the city council of Chicago approved a demolition surcharge ordinance to be levied

in two neighborhoods, the 606-Trail and Pilsen, which have experienced significant housing

redevelopment and gentrification. To identify the causal effect of the policy, we employ a

spatial difference-in-differences design comparing outcomes just inside versus just outside

the treated boundaries. We find that the policy significantly reduced housing demotion in

the treated areas, showing the policy’s success in its goal. We estimate negative, though

statistically insignificant, effects on displacement, housing rents, and sales prices, plausibly

due to the short policy horizon limiting its impact on the housing stock. We complement

the policy evaluation with evidence that a greater amount of housing redevelopment raises

neighborhood average income, leveraging the variation in decadal changes in building age

across Chicago block groups and an instrument that exogenously shifts redevelopment.

The reduced-form analysis is informative about the direct policy effect, but it does not il-

luminate on the general equilibrium consequences in untreated neighborhoods nor the welfare

implications. We develop a general equilibrium model to address these questions. The model

extends the assignment framework of Määttänen and Terviö (2014) and Landvoigt, Piazzesi

and Schneider (2015) by endogenizing neighborhood-level housing supply and demand, which

in their setting is taken as given, and it embeds realistic neighborhood heterogeneity into the

filtering framework of Sweeney (1974) and Brueckner and Rosenthal (2009). The city consists

of a set of neighborhoods, each containing a set of parcels owned by forward-looking land-

lords, and households that differ in income. Residential structures differ in both the number

of indivisible units and housing quality. Each period, households choose a neighborhood —

based on the rental prices by quality and amenities — and then select a housing unit within

that neighborhood. Landlords draw a blueprint, i.e., the option to build at a given qual-

ity, and decide whether to redevelop the parcel; if so, they choose the number of units and

pay a construction cost. Housing quality depreciates over time, and households can relocate

across neighborhoods subject to mobility costs. Neighborhood amenities are endogenous and

respond to neighborhood income, as in Guerrieri, Hartley and Hurst (2013).

In equilibrium, neighborhood-level supply and demand determine a rental pricing func-
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tion over housing quality. The shape of this pricing function governs both income sorting

and redevelopment. On the demand side, holding amenities fixed, high-income households

prefer neighborhoods with a flatter pricing function (i.e., a low price elasticity of quality), be-

cause they spend more on housing and gain more utility from an additional dollar of housing

when the marginal price increase with quality is small. On the supply side, a steeper pricing

function raises the return to supplying high-quality units, increasing landlords’ incentives

to redevelop. Therefore, redevelopment is more likely in neighborhoods where high-quality

housing is relatively scarce and the pricing function is steep. By replacing low-quality with

high-quality units, redevelopment flattens the pricing function and attracts higher-income

households. Gentrification pressures are further amplified by endogenous amenities: as in-

come rises, amenity levels increase and in turn induce greater inflows, reducing affordability

for incumbents across the quality distribution.

We discipline the model parameters using property assessment and transaction deed data

from the Cook County Assessor’s Office, as well as rental listing data from RentHub. We first

estimate housing quality using a hedonic regression of posted rent on a large set of housing

characteristics from the assessment data. We allow for flexible, neighborhood-specific pricing

functions in the hedonic regression, as our theory predicts these are important for under-

standing income sorting and redevelopment. From this regression, we obtain an estimate of

the quality depreciation rate and recover the housing quality distribution by neighborhood.

For the housing supply elasticities, we identify the housing unit supply elasticity using re-

vealed decisions of unit choices of new developments, with identifying variation coming from

demand shocks driven by an employment shift share instrument following Saiz (2010) and

Baum-Snow and Han (2024). We set the elasticity of redevelopment to match the reduced-

form estimates of the teardown tax on demolition. We calibrate the rest of model parameters

to match the model steady state to salient facts in the data on the income and quality dis-

tributions across neighborhoods and the expenditure shares spent on housing by households

with different income.

We use the estimated model to evaluate a $60,000 teardown tax in all below-median-

income neighborhoods in Chicago. This mirrors the city’s effort to expand the 606-Pilsen

Demolition Surcharge policy given its success in reducing demolitions.2 The counterfactuals

show that the policy benefits low-income households citywide by preserving old, low-quality

housing, but harms middle- and high-income households and reduces land values in treated

neighborhoods. Interestingly, the welfare effect is non-linear in income: middle-income house-

holds are harmed the most. This is because changes in housing rents are non-monotonic across

2As a succession to the three-year Demolition Surcharge, the city council approves a new policy that
expands neighborhood coverage and increases the demolition fee to $60,000, aiming to protect more low-
income residents from rising housing costs and displacement. See more details on the policy here.
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the quality distribution. The reduction in high-quality supply causes high-income households

to downgrade, pushing up rents in the middle-quality segment more than in the high-quality

segment and disproportionately harming middle-income households. Moreover, middle- and

high-income households relocate to untreated neighborhoods, raising land values there and

increasing redevelopment, particularly in relatively affordable untreated neighborhoods prior

to the policy. This highlights substantial spatial spillovers from neighborhood-level housing

supply operating through migration, analogous to the impact of city-level housing supply on

migration studied in Howard and Liebersohn (2021) and Nathanson (2025). We further show

that endogenous amenities play a crucial role in generating the general equilibrium spillovers

to untreated neighborhoods. Without amenity adjustment, the migration of middle- and

high-income households towards untreated areas is much weaker, and consequently the rede-

velopment response is also attenuated.

Related Literature. Our work is related to several strands of literature. We contribute

to the literature on filtering in the housing market. Earlier work by Sweeney (1974) and

Brueckner (1980) develops frameworks in which housing is a depreciating asset that filters

down the income distribution over time. More recently, Rosenthal (2008) and Brueckner and

Rosenthal (2009) provide empirical evidence that neighborhood income declines as the hous-

ing stock ages, highlighting the role of housing depreciation and redevelopment. Rosenthal

(2014) empirical estimates a sizable housing filtering rate at the individual building level.

Our model extends this literature by explicitly modeling landlords’ redevelopment choices

and heterogeneity in household housing demand, which together generate the dynamic feed-

back between housing redevelopment, filtering, and spatial income sorting.

This paper contributes to the assignment model literature by building on Määttänen and

Terviö (2014) and Landvoigt et al. (2015), who study the matching of vertically differentiated

housing units to households with different income.3 Abramson and Landvoigt (2025) apply

the framework to evaluate demand- and supply-side policies aimed at curbing housing costs.

Nikolakoudis (2024), Hacamo (2024), and Nathanson (2025) extend this framework to analyze

how income-specific credit conditions, mortgage interest rates, and quality-segment-specific

housing supply changes affect housing affordability across the distribution, respectively. We

contribute to this literature in two ways. First, we endogenize housing supply by modeling

forward-looking landlords who make redevelopment decisions in response to market condi-

tions; prior work takes the housing supply as given. Second, we embed the assignment

mechanism in a dynamic model, allowing us to study the long-run effects of supply changes.

The long-run perspective of studying housing supply is important given the durability and

3More broadly, the assignment framework has been used to study matching in the labor market (Costinot
and Vogel, 2010), neighborhood choice (Davis and Dingel, 2020; Couture et al., 2023), and school choice (Epple
and Romano, 2003) among other topics.
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irreversibility of housing investment (Baum-Snow and Duranton, 2025).

Our work adds to the empirical literature that studies the impact of new housing de-

velopment and demolition on local affordability, income and demographic composition, and

neighborhood amenities. This includes work on the impact on low-income housing develop-

ment (Baum-Snow and Marion, 2009; Diamond and McQuade, 2019), market-rate building

development (Pennington, 2021; Asquith, Mast and Reed, 2023; Mast, 2021; Kennedy and

Wheeler, 2023), and public housing demolition (Almagro, Chyn and Stuart, 2024; Blanco,

2023). We contribute to this work by providing a unifying, general equilibrium framework

that permits analysis of both local and city-wide effects of policies that induce changes in

housing quantity and quality. In addition, we introduce a new identification approach to

estimate the causal effect of housing redevelopment on income sorting. More broadly, this

paper is related to the literature on demand-driven neighborhood gentrification (Brueckner,

Thisse and Zenou, 1999; Guerrieri, Hartley and Hurst, 2013; Couture, Gaubert, Handbury

and Hurst, 2023), adding a complementary channel of neighborhood change through housing

quality upgrading.

Lastly, we contribute to the literature on quantitative spatial models (Ahlfeldt, Redding,

Sturm and Wolf, 2015; Monte, Redding and Rossi-Hansberg, 2018; Hsieh and Moretti, 2019),

including those with dynamics (Kleinman, Liu and Redding, 2023; Greaney, Parkhomenko

and Van Nieuwerburgh, 2024). This class of models typically assumes housing is invisible

and clears the housing market by equating neighborhood-level floorspace demand and supply,

thereby abstracting from the granular choice over heterogeneous housing units that is stan-

dard in discrete-choice approaches to housing (e.g., Bayer, Ferreira and McMillan (2007)).

We incorporate heterogeneous housing units into the quantitative spatial model and shows

that the housing quality distribution is an important determinant of income sorting across

space.

Outline. The rest of paper is organized as follows. We describe our data in Section 2

and present the empirical analysis of the demolition surcharge policy in Chicago in Section

3. We then introduce the general equilibrium model in Section 4. Section 5 describes the

estimation of the model. Section 6 presents the counterfactual analysis of a teardown tax

policy. Finally, Section 7 concludes.

2 Data

In this section, we outline the data sources used in our empirical analysis and structural

model estimation. Throughout the analysis, we focus on neighborhoods within the city of

Chicago, with neighborhood boundaries obtained from the Chicago Data Portal.
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Property assessments and transactions. We use annual assessment data and transac-

tion deeds from the Cook County Assessor’s Office and the Cook County Recorder of Deeds.

The assessment data provide parcel-level assessment records from 2000 to 2023, with a unique

parcel identification number (PIN) for each parcel. For single- and small multi-family build-

ings, the assessment records include detailed characteristics such as build year, building

and land square footage, number of units, bedrooms, bathrooms, and information on attics,

porches, air conditioning, basements, and garages. For condominium buildings, the data

are recorded at the unit level but contain a more limited set of characteristics—specifically,

square footage and the number of bedrooms and bathrooms. In addition, the assessment

data cover only multi-family buildings with up to six units; large apartment buildings with

more than six units are therefore not included in our data.

The transaction data include information on each deed, including the PIN, sale price, sale

date, buyer and seller names, and deed type, covering the universe of parcel transactions from

2000 to 2023. To restrict the sample to arm’s-length transactions, we exclude (1) sales with

prices below $10,000 or with missing prices, (2) sales involving special deed types (e.g., quit

or executor claim), and (3) transactions recorded at the same value multiple times within a

year. Given our focus is on redevelopment activities, we further exclude sales of vacant land

parcels. We then match the property assessment data to the transaction data using the PIN.

Building permit. We obtain building permit data from the City of Chicago Data Portal,

which record all major building alterations, demolitions, and new construction in the city

from 2006 to 2023. The dataset provides detailed permit-level information including the issue

date, address, work type, work description, processing time, and estimated cost. The work

descriptions are highly detailed; for instance, a permit might state “replace existing porch

in new location per plans,” “construct foundations for a proposed two-story single-family

home,” or “revision to permit #. . . ”.

We restrict the sample to permits for residential buildings, excluding those for commercial or

public structures. In addition, many permits are filed for modifications of prior approvals or

for partial alterations of an existing structure. We use ChatGPT to select the construction

and demolition permits that involve erecting or tearing down an entire housing unit. The

prompt instructs: “Can you determine whether this description of a housing permit involves

an entire housing unit? Adding or demolishing one or more floors of a building would count

as a permit on an entire unit, such as a second-floor addition to an existing building. Some

permits may involve work on only part of a unit, such as the roof or electrical system. Please

return 1 if so and 0 if not.”

RentHub data. We obtain rental information from RentHub, which has provided nation-
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wide residential rental listings since 2014. The data are collected through weekly web scraping

of more than 100 publicly accessible websites. Each listing reports the advertised monthly

rent, posting date, unit characteristics, address, and longitude-latitude coordinates. RentHub

also constructs unique unit identifiers, allowing us to track rent changes within the same unit

over time. We keep the rental listings within Chicago. To reduce the influence of outliers,

we exclude the top and bottom 1 percent of rental prices and unit square footage. We then

geocode all addresses, identify those within the treated neighborhoods, and merge the listings

with property assessment data by address to obtain additional building characteristics.

Verisk Address History data. We use the Verisk Address History data to track individual

mobility. Verisk (formerly Infutor) compiles address information from a wide range of private

and public sources, including USPS change-of-address records, county assessor files, magazine

subscriptions, and phone directories. Although the data inevitably omit some moves, Asquith

et al. (2023) show that coverage does not systematically vary with local characteristics. The

vintage of the dataset we use includes individuals whose most recent activity recorded by

Verisk occurred between 2012 and 2024, thereby providing coverage up to four years after

the teardown tax policy. We follow the data-cleaning procedure outlined in Diamond et al.

(2020) to construct an individual–year panel of address histories for those who have lived

in Chicago after 2012, defining each person’s location in a given year as their address on

January 1.

Block-Group Level Characteristics. We obtain block-group level data from two sources.

First, the 2005–2019 Residential Area Characteristics (RAC) files from the LEHD Origin-

Destination Employment Statistics (LODES) dataset provide employment by 2-digit NAICS

industry. Second, the 2009–2019 American Community Survey (ACS) provides demographic

and income tabulations at the block-group level. We construct tract-level characteristics

using block-group level data.

3 Empirical analysis of the Teardown Policy

In this section, we empirically evaluate the effects of Chicago’s teardown tax on housing

demolition and construction activities, housing rents and prices, and population displacement

in treated neighborhoods. We also provide causal evidence on how redevelopment affects

income sorting across neighborhoods. Before presenting the empirical results, we begin by

describing the policy.
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3.1 The Teardown Tax Policy in Chicago

Many neighborhoods in Chicago have undergone rising rents, upscale developments, and

a changing demographic landscape. As wealthier residents are drawn to newly developed

housing and neighborhood amenities, long-standing residents face displacement and housing

affordability issues. To address these issues, the City Council of Chicago implemented a series

of policies aimed at preserving affordable housing options and limiting housing redevelopment.

We study the 606–Pilsen Demolition Permit Surcharge Ordinance, implemented from

April 2021 to April 2024. The ordinance was designed to preserve existing multifamily hous-

ing from being torn down and replaced by higher-end single-family homes. It imposes a

surcharge on demolitions, set at the greater of $15,000 and $5,000 per demolished residential

unit, in the 606 Trail and Pilsen neighborhoods. See Figure C.1 for the policy areas.4 Rev-

enues are directed to the Chicago Community Land Trust (CCLT), which provides subsidies

for affordable homeownership. 5 Though originally designed as a three-year pilot, the ordi-

nance was extended through the end of 2024 and later renewed with broader neighborhood

coverage and a surcharge four times the original amount.

Two other related policies are worth noting. First, an anti-deconversion policy was im-

plemented simultaneously in the same two neighborhoods, which require that construction

projects cannot reduce the number of housing units. The permits issued for housing de-

conversion are classified as renovation/alteration permits in the building permit data, as

such projects often involves consolidates housing units within an existing structure without

substantial exterior work.6 Therefore, this anti-deconversion policy complements the tear-

down tax in preserving the multi-family housing. Later, we will show that this policy indeed

reduces the renovation permits that are related to deconversion.

Second, there was a demolition ban in part of the 606 neighborhood from February 2020,

which is then replaced by the Demolition Surcharge Ordinance. One might worry that this

ban could have changed the housing market conditions prior to the policy. We show later

that this temporary ban did not have a significant impact on housing demolition in a narrow

band across the boundary, which is required for our empirical strategy. In addition, had

4The political economy context is important. Chicago is divided into 50 wards, each represented by an
alderperson who also serves on the City Council. Alders wield substantial influence over ward-level zoning
and permitting decisions and are highly responsive to local constituencies and interest groups. The surcharge
ordinance was co-sponsored by the mayor and the alderpersons of Wards 1 and 35, which border the 606
Trail, and supported by the alderperson of Ward 25, which covers Pilsen.

5The demolition surcharge is waived if the demolition is required to address imminently hazardous housing
conditions, or if the replacement building reserves at least 50% of its units for low-income residents. More
details are available here.

6A demolition permit is required for construction projects to to demolish an entire building or structure,
to demolish substantially all of the above-grade portion of a building or structure, or to alter an existing
building and permanently reduce its building area.
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the temporary ban had a significant effect, we would expect to see a rebound in demolition

activities after the ban was lifted, which would imply that we underestimate the treatment

effect of the teardown tax policy.

Figure 1 illustrates that both neighborhoods were experiencing rapid redevelopment, af-

fordability challenges, and displacement pressures prior to the policy. Panels (a) and (b)

show that construction and demolition rates—measured as the share of addresses issued each

type of building permit each year—were higher in 2020 in the treated neighborhoods than

in the city overall. This reflects heightened redevelopment activity, though the trajectories

differed across the two areas: in the 606, construction activity peaked around 2016, whereas

in Pilsen it rose steadily through 2020. Panels (c) and (d) show that average rental and sales

prices in both neighborhoods increased much faster than in the rest of the city, highlighting

growing affordability pressures. Panels (e) and (f) show rising in-migration and out-migration

rates in the two treated neighborhoods, indicating greater population churn. The mobility

rates increase by more in Pilsen, consistent with its rising construction activity. Panels (g)

and (h) further show that in-migrants to the two neighborhoods increasingly originated from

higher-income tracts, while out-migrants moved to tracts with below-average incomes. Taken

together, these patterns underscore the displacement pressures generated by rising inflows of

higher-income households and the corresponding outflows of lower-income incumbents.

It is also evident from Figure 1 that, since the start of the policy, demolition and con-

struction activity have declined markedly. Growth rates in housing rents and prices have

been lower relative to the city average, as well. It is more difficult to draw conclusions from

the mobility rates, given the substantial population movements during the COVID-19 pan-

demic. These time-series patterns, however, cannot be interpreted as causal effects of the

ordinance. The observed patterns may reflect broader city-level housing market conditions

or neighborhood-specific trends unrelated to the policy. For example, it is possible that after

the COVID-19 pandemic, high-income households increasingly sort into suburban neighbor-

hoods, lowering the housing demand for 606 and Pilsen. To credibly identify the policy’s

impact, we turn in the next section to a spatial difference-in-differences framework.

3.2 Empirical Strategy

In this section, we study the impact of the Demolition Permit Surcharge Ordinance on the

treated neighborhoods. The outcome variables we examine are construction and demolition

permits, population displacement, rental prices, and housing transaction prices. To identify

the causal effect, we employ a spatial difference-in-difference strategy that compares areas

within 500 meters inside the boundary to areas within 500 meters just outside. The empirical
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(a) Demolition Rate (b) Construction Rate

(c) Average Rent (d) Average Price

(e) In-Migration Rate (f) Out-Migration Rate

(g) Avg Origin Tract Income of In-
Migrants

(h) Avg Dest. Tract Income of Out-
Migrants

Figure 1: Construction Activities, In-Migration and Out-Migration in 606 and Pilsen

Note: Data Sources: Building Permit Data, RentHub Data, Transaction Deeds Data, Verisk Address History
Data, and the American Community Survey (ACS). Panels (a) and (b) report demolition and construction
rates, defined as the share of addresses issued each type of building permit, where the address set is derived
from the Chicago Building Footprints data. Panels (c) and (d) trim the top one percent of listed rental prices
and sales prices per square foot, respectively. Panels (e) and (f) define in-migration and out-migration rates
as the number of individuals entering or leaving an area relative to its total population. For the remainder
of Chicago, we first calculate migration rates at the census-tract level and then take a population-weighted
average. Panels (g) and (h) use tract-level average household income from the ACS to calculate the average
income of migrants’ origin and destination tracts. 11



specification is given by:

Yit = δ0 +

t1∑
k=−t0

δt × 1t=k × Trti + βxtXit + µi + αxt + Fxt(LONit, LATit) + ϵit (1)

where i indexes the observational unit (parcel, individual, or rental unit), t indexes time,

and x indexes neighborhoods (606 and Pilsen); the dependent variable Yit represents one of

the outcomes of interest (construction and demolition permit dummy, displacement dummy,

log rental price, and log sales price); Trti = 1 indicates that the unit is located within

the treated neighborhoods; Xit is a vector of control variables and we allow their effect to

differ by neighborhood and time through βxt; αxt denotes neighborhood-by-time fixed effects,

Fxt(LONi, LATi) represents neighborhood-time-specific polynomial of each unit’s geographic

coordinates, and ϵit is the error term. We will provide further details on the construction

of the outcome variables and on the set of control variables used in each regression. Our

parameter of interest, δt, captures the dynamic average treatment effect of the policy.

We include a range of control variables and fixed effects to control for observed and unob-

served differences across the treatment boundary. To account for unobserved heterogeneity,

we include unit fixed effects µi for all outcomes except sales prices, since repeated transactions

of the same property within a short period are rare and potentially selected. Identification

for these outcomes therefore comes from within-unit variation before and after the policy

intervention. For the sales price regressions, as repeated sales are rare within a short period,

controlling for unit fixed effects are infeasible. We instead control for a set of housing char-

acteristics—including the number of bedrooms, bathrooms, building age, number of units,

and building square footage—to capture quality differences across properties.

We additionally include neighborhood-time-specific polynomials in latitude and longitude

to absorb granular local shocks. This helps ensure that identification comes from differential

changes across the policy boundary. For example, if rental prices gradually increased with

distance from the city center due to the rise of remote work in 2021, such spatial trends would

be absorbed by these controls, leaving the policy effect identified from the discontinuous

change at the boundary. We also control for neighborhood-specific time fixed effects to

account for neighborhood-level time-varying shocks.

The identification assumption is that the areas right inside and outside the policy bound-

ary share the same housing demand conditions, conditional on the extensive set of controls.

The choice of a 500-meter buffer is motivated by two considerations. First, it provides suffi-

cient sample size for statistical power — in particular for the building permits. Second, we

believe 500 meters is narrow enough to ensure that areas inside and outside the boundary

share the same housing demand conditions. In Table C.1, we provide a balance test between
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the 500 meter buffer areas inside and outside the treatment boundaries. We find no signif-

icant difference of a set of housing characteristics and the sales price, though the housing

rent is slightly lower inside the treatment boundary.7 Notably, the policy overlaps with the

COVID-19 pandemic, which significantly shifted housing supply and demand conditions. Our

identification relies on the assumption that these shifts do not differentially affect the areas

right across the treatment boundaries.

As discussed by Baum-Snow and Ferreira (2015), the treatment effect estimated from

any spatial difference-in-differences design includes the general equilibrium effect on control

neighborhoods. Although the reduced-form design cannot isolate general equilibrium effects,

we incorporate them in the structural model introduced in Section 4. In practice, however,

such spillover effects are likely small given the policy’s short duration and limited coverage.

As shown in Figure C.2, average construction and demolition rates just outside the boundary

do not increase following the policy. In particular, the average demolition rate in the control

area declines at a pace similar to the citywide rate, indicating limited spatial spillovers.

3.3 Housing Demolition and New Construction

We start from the policy effect on demolition and construction activities. Because these

are rare events at the address level as shown in Figure 1, we construct three-year periods

and run the spatial difference-in-difference using the address-period-level panel data. The

dependent variables are dummy variables which equal one if address i is issued a demolition

and construction permit in period t, respectively. The set of addresses are obtained from the

Chicago Building Footprints data.

Figure 2 shows that the teardown policy reduced the probability of demolition permits

in the treated areas by about 0.5 percentage points, significant at the 5% level, and the

probability of construction permits by about 0.3 percentage points, though the latter is not

statistically significant. The estimated effect on construction is smaller than the effect on

demolition. Construction permits are not taxed and can come from follow-up construction

after demolition in the previous period or from new development on parcels that were ini-

tially empty. The estimated δ’s prior to the policy are all insignificant at the 5% level in

both regressions, lending support to the parallel trends assumption. It also implies that the

temporary demolition ban enacted before the ordinance in the 606 neighborhood did not

significantly reduce teardowns in the treated area.

We perform several robustness checks for our main result. In Table C.3, we conduct

robustness checks with different buffer widths of 250 meters and 1,000 meters. With the

7Table C.2 shows that relative to the rest of the city, housing the treated neighborhoods have more units,
larger building square footage, smaller lot size, and greater build age. Average sales price before the policy
are greater, while average rent is lower.

13



(a) Demolition Permits (b) Construction Permits

Figure 2: Difference-in-Difference Results on Demolition and Construction Permits

Note: The figure shows the logistic estimation results of equation (1) at the three-year frequency with 500
meter buffers. Robust standard errors clustered at the address level. Confidence intervals are at the 95%
significance level.

250 meters buffer, the estimated effect on demolition permits becomes insignificant, likely

due to a lack of power from the smaller sample of addresses. Using the 1,000 meters buffer,

the estimated effect on demolition permits is similar to the baseline, whereas the effect on

construction permits becomes significantly negative. Figure C.3 reports estimation result of

equation (1) at the yearly frequency. The results are similar to the baseline specification

using the three-year frequency, though we find greater effects in 2021, the first year after the

policy. Figure C.4 shows the policy does not increase processing time of building permits in

the treated area, indicating that the estimated treatment effect is not driven by administrative

delays.

In addition to demolition and construction permits, we assess the policy’s impact on ren-

ovation permits and find no significant effects (see Panel (a) of Figure C.5). We also use

ChatGPT to classify renovation permits into four categories based on the work descriptions:

additions, remodeling, repairs, and deconversions. Among these, we find a marginally sig-

nificant negative effect on deconversion permits, while the other three categories show no

significant increase (see Panels (b)–(e) of Figure C.5). This pattern suggests limited substi-

tution from new construction to renovation as a means of supplying higher-quality housing

in response to the policy.

3.4 Population Displacement

We use the Verisk Address History data to study the policy’s impact on the displacement of

incumbent residents in the treated neighborhoods. The estimation sample is constructed from

14



(a) Neighborhood-Level Displacement (b) Address-Level Displacement

Figure 3: Difference-in-Difference Results on Displacement

Note: The figure shows the estimation results of equation (1) for displacement outcomes. See the main text
for details on the two displacement outcomes. Robust standard errors are clustered at the individual level.
Confidence intervals are at the 95% significance level.

a balanced individual–year address panel spanning 2014–2024. To isolate the effect of the

policy on long-term incumbents, we restrict the sample to who had lived within 500 meters

of the treatment boundaries from 2014 to 2018. We then use the address records of these

incumbents from 2018 to 2024 to estimate the spatial difference-in-differences regression.

Once an individual moved out from the treatment and control area areas, we exclude all

subsequent observations from the estimation sample, since these later location choices are

no longer directly affected by the policy. We expect the policy to lower displacement by

preserving older, affordable housing stock valued by low-income incumbents, although the

effect may be modest given the policy’s short duration.8

Displacement is measured in two ways. The first is a neighborhood-level measure, which

is set to one if an individual moves out of the buffer area in a year—that is, the 500-meter

ring just inside or outside the boundary—and zero otherwise. The second is an address-level

measure, which is set to one if an individual moves between addresses in a year and zero

otherwise. The latter measure captures the broadest definition of displacement, since even

intra-neighborhood relocations can incur moving costs on households.

The results show in Figure 3 suggest that the policy has a negative yet statistically

insignificant effect on displacement in the treated neighborhoods after the first year of its

implementation. The pre-treatment coefficients for both displacement measures are small

and insignificant, indicating that treated and control neighborhoods were subject to similar

8Recent work by Garin, Jenkins, Mast and Stuart (2025) shows that individuals experiencing earnings
growth tend to move out of poorer neighborhoods. Our research design examines how changes in housing
supply—arguably orthogonal to incumbents’ earnings changes—affect mobility.
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(a) Rental Price (b) Sales Price

Figure 4: Difference-in-Difference Results on Housing Rental and Sales Prices

Note: The figure shows the estimation results of equation (1) for log housing rental and sales prices. In panel
(a), we include the unit fixed effect and apply two-way clustering by unit ID and month. We weight each
rental listing by the inverse of the number of listings that RentHub records for each unit within a year. Robust
standard error clusted at the unit level. In panel (b), we control for a set of housing characteristics, including
the building age, number of bedrooms and bathrooms, number of units, land square feet, and average unit
square feet, and interact them with year-month dummies and neighborhood dummies to capture time-varying
demand for these housing characteristics. Conley standard errors reported. Both regressions include year-
month-neighborhood-specific polynomials of longitude and latitude. Confidence intervals are at the 95%
significance level.

displacement pressures prior to the policy. Turning to the treatment effects, we find that

both measures of displacement respond in a similar way. Displacement in the treated areas

rises slightly in 2021 but gradually declines to negative values after 2022, although none

of the estimates are statistically significant. The 2023 coefficient suggests that the policy

reduced the displacement rate by about 3 percentage points—an effect that is imprecisely

estimated yet economically meaningful relative to the average post-2020 annual moving rate

of 5 percent, as calculated from the Verisk data.

Table C.5 reports robustness checks using alternative buffer widths. As expected, the

estimated treatment effects based on the 250-meter buffer are not statistically significant.

Expanding the buffer to 1,000 meters yields an estimated effect of –0.04 in 2023, significant

at the 10% level. This comparison suggests limited statistical power to detect displacement

effects when the buffer is too narrow, while individuals located farther from the boundary

may be less comparable.

3.5 Rental and Sales Prices

We now turn to the policy’s impact on housing rents and prices. Two mechanisms could

plausibly generate downward pressure in the treated neighborhoods. First, by preventing
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demolitions, the policy modestly increases the stock of older housing, thereby expanding

the rental supply and reducing developer demand for existing units. Given the short policy

horizon and the low annual demolition rate, however, this effect is likely limited. Second,

by reducing the displacement of incumbent residents, the policy helps preserve neighbor-

hood amenities tailored to the existing population, which in turn dampens demand from

prospective gentrifiers.

Sales prices provide an additional lens because they reflect expectations of future supply

and demand conditions. A concern one may have is that the policy might have been antici-

pated before it was implemented or might have been expected to extend beyond the planned

end date. If so, these expectations should be capitalized into housing values—particularly for

older properties—since a prolonged teardown tax erodes the option value of redevelopment

and lowers the price of existing structures. The results we will soon show provide no evidence

of such expectations.

The regression results on rental and sales prices are in Figure 4. We estimate insignificant

and negative policy effects on the rental prices (Panel (a)) and on quality-adjusted sales price

(Panel (b)) in the treated area, which are as expected. The pre-trends for both prices are

insignificant, indicating parallel trends and a lack of anticipation prior to the policy. The

insignificant effect on the sales price throughout 2018–2023 also suggests a lack of market

expectation that the teardown tax would be extended. Table C.4 shows that these results

are robust to alternative buffer widths. Figure C.6 further shows that the policy lowered the

average age of buildings sold in 2021–2022, with the prices of older buildings also declining

modestly. There is also a slight increase in the building age of listed rental properties,

indicating a policy-induced expansion in rental supply of old housing.

3.6 Evidence on Redevelopment and Income Sorting

We now examine whether redevelopment causally affects income sorting. Ideally, we would

exploit the demolition-surcharge policy as a source of variation. However, the policy window

was too short to generate meaningful shifts in neighborhood income composition, and we do

not observe micro-level income data to run the spatial different-in-difference regression. We

therefore turn to citywide block-group variation in decadal changes in building age to provide

complementary evidence. Specifically, we regress 2009-2019 block-group level changes in log

median income, obtained from ACS, on changes in median building age, measured using the

assessment data, as follows.

∆ logMedian Incomeb = β0 + β1∆Median Building Ageb + βcXb + ϵb (2)
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where ∆ represents the change from 2009 to 2019, b indexes a block group, Xb is a set of

control variables, and ϵ is the error term. The change in building age proxies for the extent

of housing redevelopment, while the change in log median income captures shifts in resident

composition.9 We expect median income to rise in block groups where median building age

declines, i.e., higher-income households sort into neighborhoods with newer housing stock.

The first-difference specification accounts for all time-invariant neighborhood characteristics.

Equation (2) can be interpreted as a neighborhood demand equation, with ϵb being the

unobserved demand shocks affecting income sorting between 2009–2019.

A naive OLS regression suffers from a simultaneity bias: unobserved demand shocks can

both shift the neighborhood income distribution and incentivize housing redevelopment. For

example, Pilsen might have been gentrifying because it is within commuting distance of

high-skill jobs that experienced wage growth, which in turn spurred redevelopment in the

neighborhood.

To address these concerns, we construct an insutrmental variable in the spirit of Diamond

(2016). The instrument is the interaction between a Bartik-style shift–share measure, which

generates exogenous housing demand shocks, and the 2009 share of housing units built before

1910. With this instrument, identification comes from heterogeneous responses to housing

demand shocks: for a given positive demand shock, neighborhoods with a larger stock of

older buildings should have more redevelopment. We use 1910 because it is the average

build year of redeveloped units in our sample (see Figure C.7). The Bartik shock aggregates

2009–2019 MSA-level employment changes by 2-digit NAICS industry, using 2005 neighbor-

hood employment shares as weights, capturing local labor-demand shocks originating outside

the neighborhood that shift housing demand. The construction of the shift-share variable is

described in detail in Section 5.2. We also control for initial (2009) log median income, ini-

tial average building age, and changes in neighborhood employment, all of which are possibly

correlated with unobserved neighborhood demand shocks.

The results are shown in Table 1. We cluster the standard error at the official Chicago

neighborhood level, as the demand and supply factors for Census block groups within a

neighborhood might be correlated. The IV estimates reported in Columns (3)–(4) are both

larger in magnitude than the OLS counterparts reported in Columns (1)–(2). The estimate

in Column (3) indicates that a one-standard-deviation decrease in the change in building

age is associated with about 10.7 log point increase in median income. The IV estimate

changes by little when initial log income is added as a control, implying that the estimated

negative effect of redevelopment on income is not driven by the mean reversion process in

9We use medians for both income and age to reduce sensitivity to outliers; results are robust to using
means.
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Table 1: Change in Building Age and Income

(1) (2) (3) (4)

∆ log Income ∆ log Income ∆ log Income ∆ log Income

∆ Median Building Age -0.068*** -0.086*** -0.107*** -0.105**
(0.012) (0.015) (0.036) (0.046)

∆ log Employment -0.009 -0.052 -0.008 -0.053
(0.037) (0.036) (0.038) (0.036)

Initial Median Building Age -0.001 -0.003*** -0.001 -0.003***
(0.001) (0.001) (0.001) (0.001)

Initial log Income -0.269*** -0.276***
(0.028) (0.030)

Observations 2,268 2,268 2,268 2,268

R2 0.038 0.143 0.025 0.140

Specification OLS OLS IV IV

KP F-Stat . . 29.7 38.2

Note: All regressions are weighted by the initial number of housing units. Change in building age is normalized
to have a standard deviation of 1 year (originally 3.7 years). Standard errors are clustered at the official Chicago
neighborhood level. *** p<0.01, ** p<0.05, * p<0.1.

neighborhood income. The F-statistics of the first stage are well above the conventional

threshold of 10, confirming instrument strength. Table C.6 shows that in the first stage,

blocks with larger demand shocks and older housing stock experienced significantly larger

declines in building age, consistent with our expectations.

3.7 Taking Stock

We have shown that (1) the teardown tax effectively reduced housing redevelopment and had

negative, statistically insignificant effects on displacement, housing rent and prices, and (2)

housing redevelopment cause income sorting across. In the next section, we develop a model

that endogenizes housing redevelopment and household neighborhood sorting decisions for

an entire city. This model will enable us to theoretically analyze the relationship between

redevelopment and gentrification, conduct counterfactual analyses of housing policies, and

assess these policies’ general equilibrium effects and welfare implications.
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4 Model

Consider a city that consist of a set of neighborhoods, indexed by x ∈ X, and a location

representing an outside option o.10 Neighborhoods differ by exogenous amenities that vary

by income type, denoted by Ā(x, z). Amenities also respond endogenously to the average

income of the neighborhood, which we describe later. In each neighborhood, there is a set of

land parcels i ∈ Ix. The parcel and the residential building on it are owned by an immobile

landlord. Each residential building varies by its housing quality q ∈ Q and the number of

units h ∈ [0,∞), with h = 0 representing an empty parcel.

Households, indexed by ω, differ in their income zω ∈ [0, Zmax] and initial neighborhood

of residence xω,0 ∈ X∪{o}. There are an exogenous measure L̄(z, x0) of each household type.

Households can choose to live in a neighborhood x within the city, or to live outside the

city that provides a normalized, exogenous utility level of 1. We assume all households are

renters. Within a neighborhood, each household chooses one housing unit to rent. Moving

between neighborhoods is costly.

The model is dynamic, with time is indexed by t. Housing quality depreciates over time,

with the depreciation rate given by δ. Both landlords and households are forward-looking

when making housing supply and neighborhood choice decisions. For notational convenience,

we omit the time index t and the household index ω when there is no risk of confusion.

4.1 The Household’s Problem

The household’s problem consists of two choices. First, given the choice of a neighborhood

x, households choose the quality q of a housing unit to live in that neighborhood. Second,

given the characteristics of the neighborhood (a schedule of housing rent and amenities),

households choose one of the neighborhoods of the city or the outside location to live in. We

present these two problems below.

Housing quality choice

We adopt the assignment framework of Määttänen and Terviö (2014) and Landvoigt, Piazzesi

and Schneider (2015) for the quality choice problem. Consider a household ω with income

zω who has chosen neighborhood x. The household chooses to rent one housing unit with

quality q and the quantity of the numeraire good y to maximize the following utility function:

U(x, zω) = max
q,y

(q − q̄)αy1−α (3)

10An outside option o is needed as the number of households in the city needs to equal to the number of
housing units, which is an endogenous variable, as we do not allow for homelessness or shared occupancy.
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s.t.

P (q, x) + y = zω (4)

where α and q̄ are household preference parameters, and P (q, x) is the housing rent for one

housing unit of quality q in neighborhood x. P (q, x) is an equilibrium object determined

by housing supply and demand conditions. Parameter α governs the average expenditure

share on housing. Parameter q̄ > 0 is the minimum quality demanded by households. This

parameter controls the rate at which the expenditure share on rent declines with household

income (Couture et al., 2023; Albouy et al., 2016). If the pricing function is differentiable,

the optimal quality choice of household ω satisfies:

α

1− α

zω − P (q, x)

q − q̄︸ ︷︷ ︸
MRS of housing for numeraire

=
∂P (q, x)

∂q
(5)

Equation (5) is derived from household’s first-order conditions and is a standard condition

that equalizes the marginal rate of substitution (MRS) to the price ratio, with the final good

y being the numeraire. Moreover, for any strictly increasing pricing function ∂P (q,x)
∂q

> 0,

the MRS is strictly decreasing in q. This immediately implies that, within a neighborhood,

higher income residents match to strictly higher quality housing (Määttänen and Terviö,

2014).

The pricing function P (q, x) is an important equilibrium object. It characterizes how

housing costs vary across the quality distribution, and thus how housing affordability varies

across the income distribution given the positive assortative matching between housing qual-

ity and household income. In particular, Proposition 1 shows that high-income households

derive relatively greater utility than low-income households in neighborhoods where high

quality housing is relatively cheap; equivalently, in neighborhoods where the pricing function

is less elastic.

Proposition 1 Suppose q̄ = 0, i.e., preferences are Cobb-Douglas. Consider two neighbor-

hoods x1 and x2 and households z2 > z1. Then,

∀q ∈ Q,
∂ logP (q, x2)

∂ log q
>

∂ logP (q, x1)

∂ log q
=⇒ U(x1, z2)

U(x1, z1)
>

U(x2, z2)

U(x2, z1)
.

Proof. See Appendix A.

To illustrate Proposition 1, we consider a partial-equilibrium case where the pricing func-

tions are iso-elastic: P (q, x) = κ(x)qν(x), where κ(x) and ν(x) are neighborhood-specific

parameters. Figure 5 compares the optimal choices and utility of two types of households in

the two neighborhoods with ν(x2) > ν(x1). In Panel (a), where ν(x1) = 1, the household
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(a) Neighborhood 1, ν(x1) = 1
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(b) Neighborhood 2, ν(x2) = 2

Figure 5: Utility maximization under two pricing functions for low- and high-income house-
holds

Note: Each figure plots the budget constraints and the optimized indifferent curves for two types of households
and in a neighborhood. The solid lines are for the low-income household, and the dashed lines are for the
high-income household. The specification is as follows: (1) α = 0.7, (2) z1 = 1 and z2 = 1.5, (3) ν = 1 in
panel (a), and ν = 2 in panel (b), (4) we normalize κ to 1 in panel (a), while in panel (b), we set κ such that
the optimal bundle of (q, y) for each type of individual in panel (a) is still affordable.

problem becomes one with a standard linear budget constraint. With Cobb-Douglas prefer-

ences, it is well-known that the utility level is linear in income z. In Panel (b), where we

set ν(x2) = 2, the greater amount of housing expenditure results in less housing consump-

tion for higher-income households; this is a consequence of the convex pricing function. In

other words, the marginal utility of spending one more dollar on housing becomes smaller

as income increases. As a result, the utility gap between high- and low-income households

(discerned by the distance between the indifference curves) is smaller in the neighborhood

with the elastic pricing function.

By setting q̄ = 0, Proposition 1 abstracts from non-homothetic preferences for housing.

The purpose of this abstraction is to show how the non-linear structure of the pricing function

affects welfare inequality across neighborhoods. When q̄ > 0 , the level of the pricing function

(κ(x) in our simple example) also affects variation in the relative utility across neighborhoods,

as is well known (Couture et al., 2023; Finlay and Williams, 2025).

Proposition 1 is a partial-equilibrium statement about the pricing function and house-

hold welfare. However, it has two important implications that underpin our entire general

equilibrium theory. First, redevelopment tends to replace low-quality housing units with
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high-quality housing units. The increase in supply of high-quality housing benefits high-

income households, and this benefit is manifested in equilibrium by a lower price elasticity of

quality (to clear housing markets). Second, high-income households sort into neighborhoods

with lower price elasticities of quality because they derive relatively more value from them

than low-income households. In what follows, we show how our model of housing supply and

neighborhood choice captures both of these effects.

Neighborhood choice

In each period t, each household ω chooses a neighborhood x to reside in, according to the

following problem:

Vωt(zω, x0ω, ϵ⃗t) = max
x

τ(x;xω0) · Ut(x, zω)At(x, zω)ϵωt(x) + βEϵ⃗ Vt+1(zω, xω0, ϵ⃗ωt+1), (6)

where xω0 is the household ω’s original neighborhood, τ(x;xω0) is the mobility cost asso-

ciated with moving to x, A(x, z) is the income-specific amenity of neighborhood x, ϵ⃗ωt =

(ϵωt(1), ..., ϵωt(X), ϵωt(o)) is a vector of neighborhood-specific idiosyncratic preferences, β is

the discount factor.

A number of assumptions follow. First, following Guerrieri et al. (2013), we assume that

the neighborhood amenity responds endogenously to the average income:

At(x, z) = Ā(x, z) · z̄t(x)η, (7)

where Ā(x, z) is the exogenous income-specific neighborhood amenity, z̄ is the average neigh-

borhood income, and η is the endogenous amenity spillover elasticity. Second, the moving

cost takes the form of a utility shifter associated with living in a neighborhood other than the

original neighborhood, i.e., τ(x;xω0) < 1 if x ̸= xω0 and τ(x;x) = 1,∀x. It reflects the idea

that households may have a preferential attachment to their original neighborhood and thus

moving to another neighborhood is associated with a welfare loss. As in Desmet, Nagy and

Rossi-Hansberg (2018), the mobility-cost assumption renders the household’s neighborhood

choice problem static: households can always move back to their original neighborhood in the

future to avoid this cost. Third, we assume that the idiosyncratic preferences, {ϵωt(x)}∀ω,t,x,
are drawn i.i.d. from a Type-II Extreme Value distribution with its dispersion governed by

parameter σx, i.e., F (ϵ) = exp (−ϵ−σx) .

The assumption on idiosyncratic preference shocks allows us to solve for the mass of

households that chooses to live in neighborhood x in each period t:

Lt(x, z, x0) = L̄(z, x0) ·
[τ(x;x0) · Ut(x, z)At(x, z)]

σx∑
x′∈X [τ(x

′;x0) · Ut(x′, z)At(x′; z)]σx + τ(o;x0)σx
, (8)
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where Lt(x, z, x0) is the mass of households choosing x that are of type (z, x0), and L̄(z, x0)

are the exogenous mass of households of type (z, x0). The utility term Ut(x, z) is defined

in equation (3), and the last term in the denominator represents the utility of living in the

outside option o, which is normalized to one and multiplied by the moving cost τ(o;x0).

Equation (8) shows that households sort into neighborhoods that provide relatively high

utility value, and this sorting is potentially heterogeneous by income. Combining equation

(8) with Proposition 1 implies that heterogeneity in the price elasticity of quality across

neighborhoods induces income sorting. We summarize this result in Corollary 1.

Corollary 1 Suppose q̄ = 0, i.e., preferences are Cobb-Douglas. Consider two neighbor-

hoods x1 and x2, and households with income levels z2 > z1 that start in the same origin

neighborhood x0. Assume there is no variation in amenities between these neighborhoods.

Then,

∀q ∈ Q,
∂ logP (q, x2)

∂ log q
>

∂ logP (q, x1)

∂ log q
=⇒ L(x1, z2, x0)

L(x1, z1, x0)
>

L(x2, z2, x0)

L(x2, z1, x0)
, ∀x0.

That is, the neighborhood with lower price elasticity of quality has a greater share of high-

income households from the same origin. If there is no moving cost, then the condition on

the pricing functions imply L(x1,z2)
L(x1,z1)

> L(x2,z2)
L(x2,z1)

, where Lt(x, z) ≡
∑

x0∈X∪{o} Lt(x, z, x0).

Proof. Follows directly from Proposition 1 and equation 8.

A well-established result is that with homothetic preferences and divisible housing, vari-

ation in housing rents does not generate income sorting across neighborhoods (Diamond and

Gaubert, 2022; Finlay and Williams, 2025). Corollary 1 shows that this result no longer holds

when housing is indivisible: even under homothetic preferences, differences in the non-linear

pricing functions can induce income sorting.

Corollary 1 forms one of the key bases for understanding general equilibrium in this

model. Redevelopment, which replaces low-quality housing with high-quality housing, will

induce income sorting across neighborhoods by flattening the pricing function. Imposing a

tax on redevelopment would achieve the opposite outcome. In what follows, we formulate the

redevelopment decisions of forward-looking landlords and discuss how these decisions both

influence and are influenced by the pricing function in general equilibrium.

4.2 The Landlord’s Problem

Each landlord maximizes the expected value of the parcel it owns, which correspond to the

discounted stream of future housing rents. The discount factor is β. We denote sit = (qit, hit)

as the vector of state variables of parcel i in period t, consisting of housing quality q and the
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number of housing units h. In each period t, we assume that landlord i receives a building

blueprint q̂it, drawn from a quality distribution G(q̂), q̂ ∈ Q′ ⊆ Q. Blueprints endow the

landlord with the option, but not the obligation, to redevelop a parcel with quality q̂it. If

the landlord redevelops, they also decide on the number of housing units hit for the new

structure. Redevelopment incurs a cost Ci(q̂, h) depending on the new housing quality and

quantity, which is specified as

Ci(q̂, h) = Ωx · q̂ · hγ︸ ︷︷ ︸
Variable costs

+ Fq̂x︸︷︷︸
Fixed costs

. (9)

The cost function Ci contains a variable and a fixed cost component. The variable cost

relates to the blueprint quality q̂ and the choice of housing units h, with a convex cost

parameter γ, and a neighborhood-specific variable cost shifter Ωx. Building high-quality

units is more costly, and the marginal cost of increasing additional housing units grows with

the number of units. The fixed cost of redevelopment is Fq̂x, which varies by the blueprint

quality and neighborhood. It includes the cost of teardowns and site preparation for new

construction, the cost of acquiring the blueprint, and the regulatory cost of redevelopment

– including the teardown tax. We implicitly assume a perfectly competitive construction

sector, so the landlord captures all surplus from redevelopment. As housing investment is

irreversible, a demolished structure yields zero salvage value.

If the landlord chooses not to redevelop, she collects housing rent Pt(qit, x) · hit. The

housing quality of all units depreciates at a rate δ.11 The current period blueprint is then

destroyed, and the landlord draws a new one in the next period. We assume that once a

structure reaches the minimum quality q̄, it ceases to depreciate further. We interpret such

units as vacant—they are sufficiently dilapidated so as to provide zero housing services.

Let Vit(sit, q̂it, ξ⃗) be the value of parcel i ∈ Ix, which incorporates the capitalization

of future rent streams and the option value of potential redevelopment, given the current

housing state sit and blueprint q̂it. The landlord’s problem can be written recursively as

Vit(sit, q̂it, ξ⃗it) = max

{
V N
it (sit) +

1

σc

ξNit , V
R
it (q̂it) +

1

σc

ξRit

}
(10)

where the value of no redevelopment V N
it is the sum of rents this period and the continuation

value:

V N
it (sit) = Pt(qit, x)hit + βEq̂it+1, ξ⃗it+1

Vi,t+1

(
qDit , hit, q̂i,t+1, ξ⃗it+1

)
11We abstract from endogenous renovation and maintenance decisions. This simplification is motivated

by our empirical evidence, which shows little substitution from demolitions to renovations in response to the
teardown tax.
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and the value of redevelopment V R
it is the discounted rent stream minus construction costs

for the profit maximizing development:

V R
it (q̂it) = max

h

{
−Ci(q̂, h) + Pt(q̂it, x)h+ βEq̂it+1, ξ⃗it+1

Vi,t+1

(
q̂Dit , h, q̂i,t+1, ξ⃗it+1

)}
where we used the depreciation operator qDit = (1 − δ)qit if (1 − δ)qit > q̄, or q̄ otherwise.

Note that the redevelopment value V R does not vary by the state variable sit, as housing

investment is completely irreversible. ξNit and ξRit are the idiosyncratic cost shocks of not

redeveloping and redeveloping the parcel, which we assume are drawn i.i.d. over time and

space from a Type-I Extreme Value distribution, i.e., F (ξ) = exp (− exp (−ξ)), with its

variance scaled by parameter σc. A larger σc implies less dispersion in idiosyncratic shocks,

making redevelopment decisions more responsive to the deterministic components of the

payoff. We can then obtain the probability of redevelopment given state variables as

PR
it (sit, q̂it) =

eσcV R
it (q̂it)

eσcV R
it (q̂it) + eσcV N

it (sit)
. (11)

Our model of housing supply has important implications for understanding the general

equilibrium response to a teardown tax. The probability of redevelopment is closely tied to

the equilibrium housing quality distribution. This is because the production of high-quality

structures can only be achieved through redevelopment. If the redevelopment probability is

low (for example, because of a teardown tax), there will be relatively more buildings that have

low quality in the steady state. In general equilibrium, an increase in the abundance of low-

quality housing and the scarcity of high-quality housing will then manifest in a higher price

elasticity of quality, attracting more low-income households to the neighborhood (Proposition

1 and Corollary 1).

Rents and the incentives for redevelopment. We showed that the structure of the

pricing function matters for neighborhood sorting. The structure of the pricing function also

matters for understanding landlords’ incentives to redevelop to high-quality housing relative

to low-quality housing. The redevelopment payoff, given by V R(q̂) − V N(q, h), depends on

the value of the current structure, construction costs, and the value of the structure after

redevelopment. Crucially, the value of a new structure depends on the shape of the pricing

function: when the pricing function is steeper in quality (or more elastic), high-quality units

generate higher rental returns, increasing incentives to redevelop housing at higher quality.

This point can be illustrated with the following thought experiment. Suppose there is

an inflow of high-income households into a neighborhood. This shift in the income distri-

bution pushes up the housing rent in the high-quality segment of the local housing market,
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which, in turn, induces more redevelopment by the landlords to reap the higher return from

high-quality housing. This thought experiment explains why a teardown tax targeted to

specific neighborhoods increases redevelopment in untreated neighborhoods (see Section 6).

In Appendix A.2, we formalize this logic and prove that higher rent gradients will cause more

redevelopment to high quality segments.12

The role of random blueprints. We do not explicitly model the landlord’s optimal choice

of redevelopment quality. Instead, drawing from the macro literature (e.g., Luttmer (2011)),

we introduce random development blueprints that affect the landlord’s decision to redevelop.

The random blueprint captures, in a reduced form way, the matching frictions between

landlords and heterogeneous construction firms that generate heterogeneity in redevelopment

outcomes. This modeling choice is consistent with growing evidence on the inability of

housing investors to respond to arbitrage opportunities across segmented housing markets.

Damen, Korevaar and Van Nieuwerburgh (2025) document excess returns to low-quality

rental housing that is accompanied by a lack of entry into the sub-market. Greenwald and

Guren (2025) show that imperfect substitution across housing submarkets is necessary for

credit to play a causal role in the U.S. housing boom. One could instead model quality choice

by landlords under explicit housing market frictions in a way that can be disciplined by data.

We leave such an extension to future work.

4.3 Equilibrium Definitions

We assume that landlords have perfect foresight over future rent schedules across the entire

quality distribution. This assumption allows us to define the equilibrium for the model.

Definition 1 Given the initial housing conditions {si0}∀i, income distribution for each orig-

inal neighborhood {L̄(z, x0)}∀z,x0, a perfect foresight equilibrium is a set of housing prices

{Pt(q, x)}∀t,q,x, housing quality distributions {Ht(q, x)}∀t,q,x, households’ quality and neigh-

borhood choices {L(q, x, x0, z)}∀q,x,x0,z, and landlord value functions {Vit(s, q̂, ξ⃗)}∀i,t,s,q̂,ξ⃗ such

that in each period t

1. Each household chooses housing quality and neighborhood to maximize utility according

to (3) and (6).

2. Each landlord makes the redevelopment decision to optimize the value of the parcel,

according to equation (10).

12Our proof considers an empirically-relevant environment where depreciation and the probability of re-
development are arbitrarily small. We discuss this assumption and its implications in Appendix A.2.
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3. The housing markets clear in all neighborhoods and housing quality types, such that∫
z∈Zt(q,x)

Lt(x, z) = Ht(q, x),∀q, x, t. (12)

where Zt(q, x) is the income set of households choosing q in x at t, Ht(q, x) ≡
∑

i∈Ix 1{qit =
q} · hit, and Lt(x, z) ≡

∑
x0∈X∪{o} Lt(x, z, x0).

We define the steady-state equilibrium of the model as follows.

Definition 2 A steady-state equilibrium is one in which the rent functions {Pt(q, x)}∀t,q,x,
housing quality distributions {Ht(q, x)}∀t,q,x, household allocations {L(q, x, x0, z)}∀q,x,x0,z are

constant over time.

4.4 Illustrating the Effect of a Teardown Tax

Before turning to the quantitative analysis, we present a simple example that illustrates how

a change in the housing quality distribution affects a neighborhood’s income distribution

and pricing function. In the example shown in Figure 6, we model the effect of a teardown

tax by introducing a downward shift in the neighborhood’s housing quality distribution and

we abstract from endogenous redevelopment. To clarify the roles of the household mobility

and endogenous amenities in mediating the effects of shift in housing quality, we proceed in

four steps. We begin with a baseline equilibrium (see the note to Figure 6 for details). We

then shift the housing quality distribution while keeping the income distribution fixed. Next,

we allow households to relocate while holding neighborhood amenities constant. Finally,

we allow both household mobility and neighborhood amenities to adjust endogenously. In

each scenario, we solve for the pricing function and the income distribution as equilibrium

outcomes.

With the income distribution held fixed, a deterioration in the housing quality distribution

raises rents across all quality levels – this is known as the “trickle down” effect in assignment

models (Nathanson, 2025; Nikolakoudis, 2024). When high-quality housing becomes scarce,

high-income households are forced to move down the quality ladder. This reallocation shifts

the housing assignment such that, at every quality level, the income of the occupying house-

hold increases. According to equation (5), the slope of the rent function at any quality level

equals the marginal rate of substitution (MRS) between housing and the numeraire good.

Since high-income households spend more on the numeraire good, their MRS of housing is

higher, which steepens the rent function and raises rents throughout the quality spectrum.

This comparative statics exercise highlights an important insight: in the absence of house-

hold mobility, preserving low-quality housing at the expense of reducing high-quality housing

supply can worsen, rather than improve, housing affordability for types of housing.
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Figure 6: Illustrating the Effect of a Teardown Tax

Note: We simulate a model with one focal neighborhood and an additional outside-option location that
provides exogenous utility value. We then compare the income distribution and rent function in the focal
neighborhood across four equilibria. In the baseline equilibrium (dashed line), the neighborhood has uniform
distributions of housing quality and income over the interval [0.25, 1.25]. For the remaining equilibria, we
shock the housing quality distribution. This new housing quality distribution is first-order stochastically
dominated by the baseline one. In the teardown tax, no-mobility equilibrium (dotted and dashed line), we
simulate the effects of this shock on rents holding the set of households in the neighborhood fixed at baseline.
In the teardown tax, mobility with exogenous amenities equilibrium (dotted line), we allow household mobility
but keep neighborhood amenities fixed. Finally, in the full equilibrium (solid line), we allow for both mobility
and endogenous amenities.

The income distribution changes significantly once households are allowed to re-optimize

their neighborhood choices. As discussed in Section 4.1, high-income households dislike

neighborhoods where high-quality housing is relatively more expensive. The steepening of

the rent function therefore induces many high-income households to move out, who are

substituted by lower-income households. Nevertheless, a substantial share of high-income

households remains, driven by idiosyncratic preferences or attachment to local amenities.

This re-sorting shifts down the neighborhood’s rent function. Most importantly, low-quality

housing becomes cheaper relative to the baseline equilibrium, which is the intended outcome

of the teardown tax policy.

When neighborhood amenities endogenously respond to income, the rent function shifts

further downward. As neighborhood amenities deteriorate, equilibrium rents must decline

across all housing units to clear the housing market. A small share of the top-income house-

holds move out as amenities and the rent function adjust. This illustrates the amplifying

effect of endogenous amenities on housing rents: the out-migration of high-income house-

holds not only reduces competition for low-quality housing but also lowers neighborhood

attractiveness, both of which contribute to improved housing affordability.

This illustrative exercise holds the utility level of the rest of the city constant. In the full
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general equilibrium analysis, which we investigate in Section 6, amenities in other neighbor-

hoods will improve as high-income households move in, making the neighborhood subject to

the policy even less attractive. In addition, the migration of high-income households into the

untreated neighborhoods will raise the demand for high-quality housing there, thus increasing

the incentive of the local landlords to redevelop. These general equilibrium adjustments will

further amplifies the rent-reducing effect of the teardown tax on the treated neighborhoods

and generate significant ripple effects on the untreated neighborhoods.

5 Estimation of Model Parameters

In this section, we discuss how we estimate the parameters of the model. First, we esti-

mate hedonic regressions using the rental listing data to obtain neighborhood-specific pricing

function parameters and the quality depreciation rate δ. A byproduct of this hedonic regres-

sion is an empirical measure of quality at the property-year level. Second, we estimate the

intensive-margin housing supply elasticity γ from observed redevelopment and estimate the

extensive-margin housing supply elasticity σc by matching the spatial difference-in-difference

estimate of the teardown tax on demolition. Finally, we calibrate remaining parameters by

matching empirical moments and by following the estimates from the literature.

Our spatial unit of analysis is the official Chicago neighborhood, as defined by the mu-

nicipality. There are 98 of these neighborhoods, and they are larger than the policy areas

considered in Section 3. For model computation, we aggregate contiguous neighborhoods into

24 neighborhood groups using a spatial clustering algorithm based on neighborhood housing

density and average income. On average, each neighborhood group has 50,000 housing units.

Figure C.8 maps these neighborhood groups. For the remainder of this paper, we use the

term “neighborhoods” and “neighborhood groups” interchangeably unless a distinction is

required.

5.1 Estimating the Pricing Functions

We start with estimating the pricing functions. We assume that housing quality is a uni-

dimensional measure that is log-additive in the observed and unobserved components:

log qit = − δ × Building Ageit︸ ︷︷ ︸
Depreciation

+
∑
c∈C

αc logX
c
it︸ ︷︷ ︸

Other observed characteristics

+ log ϵqit︸ ︷︷ ︸
Unobserved characteristics

, (13)

where δ is the depreciation rate, C is a set of observed housing characteristics, Xc is the

value of each characteristic, and ϵq is the unobserved quality component. We then estimate
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neighborhood-specific iso-elastic pricing functions:

logP (q, x) = log κ(x) + ν(x) log q, (14)

where κ(x) and ν(x) are the neighborhood-x-specific fixed effect and the quality gradient,

respectively. A larger κ raises the rent level at any given quality; a larger ν steepens the

rent-quality schedule.

Combining equations (13) and (14) yields a hedonic regression model:

logPit = log κ(x) + ν(x)

[
−δ × Building Ageit +

∑
c∈C

αc logX
c
it

]
+ ν(x) log ϵqit, (15)

where Pit is the listed rent of housing unit i in year t. Equation (15) is estimated by a

nonlinear least squares (NLS) estimator, up two sets of normalization. We normalize the

average quality elasticity is to be one, 1
|X|
∑

x∈X ν(x) = 1.13 We then recover housing quality

as q̂it = −δ̂ × Building Ageit +
∑

c∈C α̂c logX
c
it using the parameter estimates for all the

parcels in the assessment data.

We estimate the hedonic regression using rental listing data from RentHub. We merge

RentHub data with property assessment data to obtain a more complete set of housing at-

tributes. The set of housing characteristics C includes unit floor space, number of bedrooms

and bathrooms, land parcel size, number of floors, number of housing units in the build-

ing (categorized as single-family, small multi-family [≤4 units], and large multi-family [>4

units]), types of construction material, the heating system and porch, and the presence of

garage. We deliberately select characteristics that are plausibly time-invariant with respect

the structure age, as time-varying attributes (renovation and maintenance conditions) would

be bad controls for identifying the depreciation rate δ. Therefore, our estimate of δ should

be interpreted as the gross depreciation rate that incorporate both physical wear and the

impact pf endogenous maintenance and renovation over a property’s life cycle.

We exclude buildings constructed before 1940, for two reasons, First, the U.S. Bureau of

Economic Analysis (BEA) assigns an 80-year service life to 1–4 unit residential structures.

Properties exceeding this lifespan likely reflect exceptional maintenance. Second, historic

buildings may possess historical charm that increase their market value. Both factors would

bias the estimated depreciation rate downward.

One might be concerned that unobserved quality characteristics ϵqit may be correlated

with observed attributes, which introduces a classic omitted variable issue. To address this,

13Because the quality index q has no cardinal scale, the normalization anchors quality so that a neighbor-
hood with ν = 1 has rent proportional to q.
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we follow Diamond and Diamond (2024) to proxy unobserved quality with property-specific

percentile ranks of past sale prices. Specifically, we compute percentiles within cells defined

by year × neighborhood × build-year decade and merge these ranks to the listing data. The

constructed percentiles capture a unit’s relative unobserved quality within its local market

and are, by construction, orthogonal to building age. We limit the sample to listings with

prior sales and control for a quadratic in the percentile rank in (15).

Depreciation rate δ Our preferred specification, which includes sales price percentiles

as controls, yields an annual quality depreciation rate of approximately 0.21%. Excluding

the sales price percentile controls slightly lowers the estimate to 0.19%. The downward bias

in the depreciation rate arises from a negative correlation between unobserved quality and

building year, suggesting that lower-quality newer houses are more likely to appear in the

rental market than higher-quality ones.

Our estimated depreciation rate of 0.21% is below the nationwide estimate of 0.4% for

rental housing reported by Rosenthal (2014). This lower rate likely reflects greater main-

tenance and renovation efforts in Chicago, as developable open land is scarce (Baum-Snow,

2023). In addition, Rosenthal (2014) estimates higher depreciation rate of 0.8% for owner-

occupied housing; this likely reflects relatively greater maintenance efforts for rental housing.

We do not want to limit our focus to rental housing, as the policies we study affect the entire

housing market. For this reason, we adjust the depreciation rate in our model to 0.3%.

Pricing Function and Quality Figure C.9 reveals substantial between-neighborhood

variation in the estimated levels and quality gradients of the pricing functions, log κ(x) and

ν(x). The standard deviations of log κ(x) and ν(x) are 0.26 and 0.19, respectively. The

former indicates that, holding housing quality constant, a one–standard-deviation increase in

neighborhood rent level corresponds to a 29.4% higher rent; the latter implies that a one per-

cent quality increase translates to a 19% greater increase in housing rent in a neighborhood

where the rent-to-quality elasticity is one–standard-deviation larger.

Table C.9 shows that at the neighborhood level, newer housing stock and higher income

are associated with higher housing rent, rent level as measured by the fixed effect and average

housing quality. The elasticity of rent with respect to quality decreases with building age but

shows no systematic relationship with neighborhood median income. While higher-income

households favor neighborhoods with flatter pricing schedules, their sorting simultaneously

raises demand for high-quality units, thereby steepening the rent–quality gradient. This lack

of a correlation is directly analogous to a traditional supply and demand model where prices

and quantities may be uncorrelated.
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5.2 Housing Supply Elasticities

We detail how we estimate two housing supply elasticity parameters: the housing unit cost

elasticity γ and the redevelopment elasticity σc. Parameter γ governs, conditional on rede-

velopment, how strongly the number of housing units per parcel changes with housing prices

(the intensive margin of new housing supply). We estimate γ by leveraging housing demand

shocks induced by labor market shocks, following Baum-Snow and Han (2024). Parameter σc

governs how strongly the redevelopment responds to changes in the value of redevelopment

(the extensive margin of housing supply). We estimate σc by matching the empirical estimate

of the effect of the teardown tax, which exogenously lowered the value of redevelopment.

Housing unit cost elasticity γ

We use the assessment data and transaction deeds data to estimate the housing unit cost

elasticity γ. We detect redevelopment if the build year of a parcel changes across assessment

records of different years. We then obtain the transaction price of the newly constructed

building from the transaction deeds data. We retain only the first transaction after each

redevelopment, provided it occurs within three years after the redevelopment. To align with

the timing of the shift-share instrument, we restrict redevelopments between 2010 and 2019.

The parameter γ is identified from the observed building unit choices of the redeveloped

buildings. When the cost function is more convex (i.e., larger γ), the fewer additional housing

units will be developed in response to an increase in housing demand. As housing investment

is irreversible, the choice on the new building is not affected by the characteristics of the

demolished building. From the landlord’s profit maximization problem, we can obtain the

following estimation equation for redeveloped parcels:

log hit = Γ +
1

(γ − 1)

(
log

Vit (qit, h)

h
− log qit

)
− 1

(γ − 1)
log Ωx +

1

(γ − 1)
ϵγit (16)

where Γ ≡ − 1
(γ−1)

(log γ − log β) is a constant, hit is the number of housing units of the new

building, V (q, h)/h is the per-unit price at quality q,14 Ωx and ϵγ comprise the error term

in this regression: the former is the neighborhood-level cost shifter, and the latter contains

measurement error in quality estimation and parcel-level unobserved construction costs that

are not explicitly modeled in Section 4.

There are two important considerations when estimating equation (16). First, the unit

price needs to be adjusted by the housing quality. Because higher-quality buildings both

14Strictly speaking, unit choice depends on the marginal value ∂V/∂h, which we approximate by average
value per unit V (q, h)/h. The two differ only because the number of units affects the option value of future
redevelopment embedded in V ; for newly built properties this effect is small. See Appendix B.1 for details
on the derivation.
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command higher prices and cost more to construct, omitting quality q would downward

bias the estimate of 1/(γ − 1). We obtain q for the redeveloped buildings from our hedonic

regression estimates (equation (13)).

Second, the error term contains unobserved supply-side cost shocks that are correlated

with parcel values and quality. Neighborhoods with rising house prices often face tighter

regulation, which can hinder unit additions. Moreover, our quality proxies—constructed

from hedonic estimates and deed prices—are measured with error. Together, these forces

bias the OLS estimate downward. To address these issues, we construct a shift–share Bartik-

style instrument as below:

Bartikx,t =
∑

ind ̸=Cons

(
EMPx,ind,t0∑

ind̸=Cons EMPx,ind,t0

)
∆ logEMPmsa,ind (17)

where EMPx,ind,t is the number of individuals who live in neighborhood x, work in industry

ind, at time t, and ∆ logEMPmsa,ind is the change in log employment in industry ind at the

MSA level. We use the LEHD Origin–Destination Employment Statistics (LODES) Residen-

tial Area Characteristics (RAC) to construct exposure weights at the block-group level (by

2-digit NAICS), aggregate them to neighborhoods, and compute baseline employment shares

in t0 = 2005. The shifters are MSA-level industry employment growth over 2010–2019.15

The shift–share instrument measures each neighborhood’s exposure to MSA-wide industry

shocks, yielding predicted changes in local labor demand. It is relevant because higher local

labor demand raises housing demand through income effects. We construct the instrument

at the census block group level, rather than the broader neighborhood group level, to exploit

the granular variation in housing demand. We follow Borusyak and Hull (2023) in assuming

that MSA-level industry shocks are exogenous to individual block groups. We exclude the

construction industry from the instrument because its employment is likely affected by the

local construction productivity shocks.

We further control for the log of 2005 block group employment and employment growth

from 2010 to 2019 at the census block group level, accounting for potential correlations be-

tween unobserved housing supply factors and the levels and changes in housing demand.

neighborhoods that face high housing demand may respond by increasing housing regula-

tions. As pointed out by Davidoff (2016), more supply-constrained areas also tend to have

greater productivity and housing demand growth. Furthermore, the Bartik-style instrument

is designed to leverage the industry-level labor demand shocks outside the neighborhood

to shift the neighborhood’s housing demand. Controlling for changes in local employment

15Consistent with Baum-Snow and Han (2024), Bartik shocks constructed from pre-2010 data (e.g.,
2005–2009) are only weakly correlated with housing prices.
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Table 2: Estimation of the intensive housing supply elasticity

Dependent Variable: Log(Housing Units)

OLS IV OLS IV

(1) (2) (3) (4)

Log(Price Per Unit) −0.114∗∗∗ 0.068∗

(0.018) (0.040)

Log(Adj. Price Per Unit) −0.037∗ 0.091∗

(0.022) (0.052)

Num. obs. 3304 3304 3304 3304

R2 0.155 −0.059 0.076 0.007

First Stage F-stat 13.1 9.5

Note: The table shows the estimation result of equation (16). Columns (1)–(2)
use the unadjusted price per unit (V/h), while Columns (3)–(4) use the quality-
adjusted price per unit (V/(hq)). Columns (1) and (3) report the OLS estimates,
while Columns (2) and (4) report the IV estimates. All columns control for log
2005 block group employment, 2010-2019 block group employment growth, and
year-month fixed effects. Standard errors are clustered at the census block group
level. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

ensures that we only exploit labor demand shock outside of the census block group for iden-

tification. Our identification assumption is that the pre-determined industry employment

shares in each neighborhood, conditional on the controls, are uncorrelated with unobserved

construction costs Ωx.

We report the estimation result in Table 2. The full specification (Column (4)) gives a

unit supply elasticity of 0.09, which transforms to the value of γ as 12.0. The F-statistics of

the first stage is 9.5, around the rule-of-thumb threshold of 10. The low F-statistic largely

reflects limited statistical power, since the Bartik instrument varies only at the block-group

level rather at the parcel level. Adjusting the housing price by quality significantly increases

the estimate in both specifications. The IV estimates are significantly greater than the cor-

responding OLS estimates, which are downward biased. The estimated unadjusted supply

elasticity of 0.07 is at the ballpark of the average unit supply elasticity of 0.03 for redevelop-

ment reported by Baum-Snow and Han (2024).
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The Cost Dispersion Parameter: σc

We leverage the teardown tax policy to identify the parameter σc. Specifically, σc is related

to the change in log odds ratio caused by change in the redevelopment payoff:

∆ log
PR

1− PR
= σc ∆(V R − V N) (18)

where PR is the probability of redevelopment, ∆ is a change operator, V R − V N represents

the redevelopment payoff, which is the difference between the value of redevelopment and

non-redevelopment.

We exploit the teardown tax policy to identify σc using equation (18). The left-hand side

corresponds to the estimate of the treatment effect from a logistic counterpart of the spatial

difference-in-difference regression (1), which is −0.90. The change in redevelopment payoff is

the teardown tax of −$15, 000. The semi-elasticity of housing redevelopment is thus obtained

as σc = (−0.90/− $15, 000)× $1000 = 0.06 (measured in thousands of dollars).

The temporary feature of the policy enables the credible identification of σc. First, because

it lasts only three years, the demolition tax should not be capitalized into future parcel values;

it only affects the redevelopment payoff during the policy period. Figure 4 shows that the

policy did not significantly affect housing prices. Panel (c) of Figure C.4 further indicates that

the policy had no discernible impact on the estimated costs of new construction permits, a

proxy of building quality. Together, these findings suggest that the teardown tax influenced

redevelopment decisions primarily by raising fixed costs rather than by altering the value

or the quality choice of newly constructed structures. Second, the short duration and small

treated areas (around 5,000 buildings on average) also limit the city-wide general-equilibrium

effects of the policy. For this reason, we interpret the estimated σc as the intertemporal

elasticity of housing supply; that is, how shifts in the redevelopment payoff affect the timing

of redevelopment. 16

5.3 Calibration of Other Parameters

Lastly, we describe how we choose the remaining parameters. We internally calibrate a

set of parameters to target three sets of empirical moments: the neighborhood-level pric-

ing functions, the neighborhood-level population and income distribution, and the housing

expenditure shares of households with different income levels. Matching these moments is

essential for the model to plausibly capture neighborhood-level demographic dynamics and

16This interpretation is consistent with the nature of the landlord’s decision in the model, which is to choose
the timing of redevelopment of its own parcel. An alternative model one can write down is that developers
cross-sectionally choose between parcels to redevelop and receive part of the payoff. Our assumption of a
perfect construction sector abstract away from rent sharing and the choice of the developers.
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to evaluate the welfare effects of the teardown tax. We calibrate the rest of the parameters

using standard values from the literature. Internal calibration comprises a demand block and

a supply block, which we describe below.

Demand Block

Calibration of the demand block involves choosing a discretized quality grid Q and housing

preference parameters (α, q̄). For the quality grid, we use the empirical distribution of housing

quality obtained from the hedonic regression (15) and set the upper and lower bounds of the

quality space to three standard deviations above and below the mean, respectively. We

then discretize the quality space into 61 equally spaced levels. We then choose the housing

preference parameters (α, q̄) to minimize the distance between rent expenditure shares across

ten income deciles calculated using the ACS and those implied by our model under the

empirically estimated rent function P (q, x). This procedure yields an approximate value of

α = 0.09, indicating that a top-income households spend slightly more than 9% of their

expenditure on rent. The estimated minimum quality level, q̄, implies that a bottom-income

household spends at least $5, 850 per year on housing, given the average pricing function

across neighborhoods in Chicago.

With only two parameters, our model matches rent expenditure share deciles closely, with

errors never exceeding one percentage point. This accuracy is consistent with findings in the

literature using similar preference specifications (Couture et al., 2023).17 The estimated

rent function and housing preference parameters generate a model-implied housing quality

distribution, H(q, x), through households’ problem (3). In the next step, we choose the

remaining housing supply parameters to match this quality distribution.

Supply Block

Calibration of the supply block involves choosing the blueprint distribution G(q̂), and fixed

costs of construction Fq̂x to match the model-implied quality distributions H(q, x). To reduce

the computational burden, we assume that the support of the blueprint distribution, Q′,

comprises only three quality levels corresponding to the upper bounds of the tertiles of the

empirical quality distribution.

Within each neighborhood, both fixed costs and the blueprint distribution play crucial

roles in determining the steady-state quality distribution. However, they cannot be separately

identified using H(q, x) alone. Intuitively, if higher-quality blueprints are more likely to be

drawn, more high-quality housing will be supplied in equilibrium. The same outcome would

arise if the fixed costs of constructing high-quality housing were lower. For this reason, we

17The minimum quality level, q̄, is included as the lowest value in the quality grid Q. Given our preference
specification, demand for this segment is always zero.

37



assume that the blueprint distribution G is uniform across quality segments. We interpret

the blueprint distribution G as a reduced-form representation of market frictions rather than

a literal technological process (see Section 4).

For each neighborhood, there are 3 different fixed costs Fq̂x to calibrate, each correspond-

ing to a point on the support of the blueprint distribution. Specifically, we calibrate the fixed

costs to reproduce the observed shares of housing units within four equally-spaced quality seg-

ments. The variation in the calibrated fixed costs likely reflects, in part, cross-neighborhood

differences in housing regulations that shape the equilibrium quality distribution of hous-

ing (Macek, 2024). They may also capture regulatory fees and other barriers that make

high-quality development relatively more costly.

The remaining housing supply parameters to be calibrated are the unit cost shifters,

Ωx, and the total mass of parcels by neighborhood. The parameter Ωx is chosen to match

the average number of housing units per parcel in each neighborhood, as observed in the

assessment data: lower construction costs directly imply a higher density of units for any

given building value function. The total mass of parcels is then selected to ensure that

neighborhood sizes, measured by the total number of housing units, are consistent with the

data. Because some parcels remain vacant (with quality q = q̄), the number of parcels always

exceeds the minimum required to match neighborhood sizes. Under our calibration, these

vacant parcels represent less than 1

Construction Cost Estimates Our procedure yields reasonable construction costs that

vary across neighborhoods. In Figure B.1, we plot both total and fixed construction costs

broken down by neighborhoods and each of the three blueprint quality levels we consider. The

figure shows that, to construct a structure at a quality level in the 33rd percentile of housing

quality, fixed and total costs are on average only $120, 000 and $200, 000, respectively. To

build a home in the top quality percentile, these costs are exponentially greater, at 1.4 and 1.8

million dollars, respectively.18 Fixed costs comprise almost 75% of total construction costs,

and a greater share for higher quality blueprints. Construction costs vary almost as much

across neighborhoods as they do across quality segments. Higher-income neighborhoods have

both higher average fixed costs and a greater dispersion of fixed costs across quality segments.

This reflects stringent land use regulations set by affluent homeowners.

18EcoBuild Plus is a Chicago area contractor that specializes in the construction of single family and
low-density multifamily homes. They estimate that the total costs of building an average home range from
$450, 000 and $700, 000 inclusive of land acquisition costs. For luxury homes, costs can easily exceed millions,
with prices up to $500 per square foot. These costs are inclusive of additional fixed costs for architecture
and interior design consultation. See their article here.
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Remaining Parameters

There are a few remaining parameters we take from the literature. We set the discount

factor to be 0.97. We follow Baum-Snow and Han (2024) to calibrate a migration elasticity

of σx = 8.5. We abstract from the estimation of neighborhood displacement costs in this

iteration of the paper and set τ(x′;x) = 0.75 for all x ̸= x′ ∈ X. This means that a

household receives a disutility approximately equal to 25% of income when moving to another

neighborhood. This welfare cost is, on average, much lower than those of dynamic models of

moving costs that often have estimates exceeding $100, 000 (e.g., Kennan and Walker (2011)).

Using estimates from Macek (2024), we calibrate the elasticity of amenity values to income

as η = 0.24. Exogenous amenities Ā(x, z) are then chosen to rationalize observed income

distributions as neighborhood choices in the model. We take the outside option o to be

the remainder of the Chicago–Naperville–Elgin, IL-IN-WI MSA, excluding the municipality

itself.

6 Counterfactual Analysis

We use the model to evaluate the general equilibrium effect of the teardown tax policy. In the

counterfactual, we impose a $60,000 teardown tax on all neighborhoods with income below

the median that lasts 50 years. This counterfactual analysis mirrors the City of Chicago’s

efforts to stop redevelopment in more neighborhoods. Before the 606–Pilsen Demolition

Surcharge Ordinance expired, the City Council approved an enlarged policy—the Northwest

Side Preservation Ordinance—which expands geographical coverage, raises the surcharge

amount to $60,000, and is set to expire in 2030. See the policy description here.

To highlight the heterogeneity in spillover effects, among the untreated neighborhoods we

report results separately for those with relatively high and relatively low average income. See

Figure C.10 for a map of these three groups of neighborhoods. We solve for the full transition

path from the initial steady state to the new equilibrium and compare outcomes along the

transition. Because housing depreciates slowly (0.3% per year), solving the full transition

path at annual frequency is computationally challenging. We therefore set one period in the

model to be 10 years and adjust our parameters at an annual frequency accordingly.

6.1 Policy Effect across Neighborhoods

Figure 7 presents the policy’s effect on redevelopment rate, average rent, average housing

quality, and average income across the city up to 10 periods. The top-left panel reveals

significant intertemporal and interregional substitution in housing redevelopment induced by

the teardown tax. In treated neighborhoods, the redevelopment rate falls by roughly one-
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Figure 7: The Impact of a 50-Year Teardown Policy on Housing Redevelopment, Rent,
Quality and Neighborhood Income

half while the policy is in force, then overshoots—nearly doubling—once the policy expires,

before gradually converging back to its initial steady state level. In untreated neighborhoods

redevelopment increases during the policy and declines after it is lifted, although the mag-

nitudes are much smaller in absolute terms. On average, the redevelopment rate increases

by 25% during the policy period. The cross-neighborhood substitution effect arises because

the policy pushes high-income households out of treated areas, raising demand for higher-

quality housing in untreated areas and thus increasing redevelopment there. Since roughly

half of the city is covered by the tax, the citywide redevelopment rate also declines during

the policy period and rises afterward, with magnitudes about half as large. These shifts in

redevelopment lead to a decline in housing quality in treated neighborhoods and an upgrade

in untreated ones, as shown in the bottom-left panel.

Among untreated neighborhoods, the increase in redevelopment is more than twice as

large in low-income areas as in high-income areas — the decadal redevelopment rate in the

untreated low-income group rises by roughly 6 percentage points more than in the untreated

high-income group. The heterogeneity in redevelopment spillovers arises from selective mi-

gration. As housing quality deteriorates in treated neighborhoods, households at the top of
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Figure 8: The Impact of a 50-Year Teardown Policy on the Rent Function

the income distribution in these areas, the majority of whom are middle-income households

in the city, move out. By revealed preference, these households will sort into neighborhoods

with a higher pre-policy share of similar-income households. Meanwhile, low-income house-

holds also move from untreated into treated neighborhoods. Consequently, the low-income

untreated neighborhoods receive a greater inflow of high-income households from treated

areas and a greater outflow of low-income households. Their average income therefore rises

about 5.0% in period five, more than the rise of 1.5% in high-income untreated neighbor-

hoods, as shown in the bottom-right panel. The greater increase in average income leads

to faster rent growth in these neighborhoods, shown in the top-right panel, incentivizing

redevelopment to a greater extent. City-level average income also decreases significantly by

about 1.7% in period five, resulting from selective migration into and out from the outside

option.

Figure 8 illustrates how housing rents vary along the quality distribution across different

groups of neighborhoods in period 5. In treated neighborhoods, rents decline sharply for

low-quality units but rise modestly for high-quality units. This change in the rent function

is qualitatively consistent with the illustrative example in Section 4.4. As the housing qual-

ity distribution deteriorates, lower-income households move into the treated neighborhoods,
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reducing local amenities. These adjustments shift the rent function downward, particu-

larly in the low-quality segment where housing supply expands. In contrast, high-quality

units become relatively more expensive due to their scarcity and demand from higher-income

households who choose to stay.

Interestingly, in untreated neighborhoods,especially those with lower average income,housing

rents exhibit a hump-shaped change along the quality distribution. Rents decline for low-

quality units but rise more strongly for middle-quality units than for high-quality ones. This

is because the increase in redevelopment is insufficient to meet the demand for high-quality

units from the households moving in. This generates a “tickle-down” effect on the rent along

the quality distribution as high-income households downgrade in quality. Moreover, most

households moving out of the treated neighborhoods are middle-income, further increasing

demand for middle-quality units in the untreated areas and pushing up housing rent. Rents

for low-quality units decline as the overall citywide supply of low-quality housing expands.

These forces jointly result in the hump-shaped rent changes in the non-treated neighborhoods.

Lastly, Figure C.11 reveals significant changes in land values across the city. As a result

of demand shifts in the rental markets, the average land value in treated neighborhoods falls

by 4.9%, while land values in untreated low-income and high-income neighborhoods rise by

3.75% and 1.25%, respectively. This result shows that the targeted teardown tax—designed

to assist low-income renters—is regressive for homeowners, which helps explain the opposition

among homeowners in the policy areas (see local news coverage here).

6.2 Welfare Effect across Households

Figure 9 shows that the policy generates significantly heterogeneous welfare effects on house-

holds by income and initial neighborhoods. During the policy period, low-income households

in the treated neighborhoods benefit the most: their welfare, measured in equivalent vari-

ation, increases by 1% at the beginning of the policy, which rises to 4% before the policy

concludes. Low-income households in untreated neighborhoods also benefits significantly,

as they can move to the treated neighborhoods to live in cheap, low-quality units. Due to

moving costs, their welfare gains are smaller than the low-income households already living

in the treated neighborhoods.

Most middle- and high-income households suffer from sizable welfare losses, except for

the richest who are initially in the untreated neighborhoods. Those who begin in treated

neighborhoods suffer from greater welfare loss due to moving costs. Similar to the non-linear

changes in rent with respect to quality, the welfare effect is also non-monotonic in income:

holding fixed the initial location, the highest-income households lose less than middle-income

ones. Two forces account for this. First, as a result of non-homoethetic preference, high-
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Figure 9: The Impact of a 50-Year Teardown Policy on Welfare by Income and Initial Neigh-
borhood

income households spend a smaller share of their income on housing, so the same increase

in rent translates into a smaller welfare loss. Second, rent increases are larger for middle-

quality housing than for top-quality housing in the untreated neighborhoods (Figure 8) in

which most middle- to high-income households reside after the policy. For the highest-income

households initially in the non-treated neighborhoods, the amenity improvement from having

higher-income neighbors outweigh the slight increase in the housing rent at the very top of

the quality distribution. After the end of the policy, welfare of all types of households return

back to the initial level, indicating that the teardown policy serves purely as redistributive

tool in the short run.

6.3 The Role of Endogenous Amenities

To isolate the role of endogenous amenities in mediating the policy’s effects, we re-simulate

the policy while holding neighborhood amenities fixed. The results are reported in Figure

10. Without endogenous amenities, the spillover effect of the teardown tax on redevelopment

in untreated neighborhoods is much smaller, and the effects on average rent and income

are correspondingly weaker. Absent amenity adjustments, the return to relocating from

treated to untreated neighborhoods for high-income households is greatly reduced. In period

five, the increase in average income in the untreated low-income neighborhoods is 3.8%,

compared with 0.75% in the baseline model with endogenous amenities. The attenuated

43



Figure 10: The Impact of a 50-Year Teardown Policy without Endogenous Amenities on
Housing Redevelopment, Rent, Quality and Neighborhood Income

mobility response weakens rent growth, which in turn dampens redevelopment incentives,

further suppressing subsequent sorting into untreated areas. This comparison reveals a strong

complementarity between housing redevelopment and endogenous amenities in mediating

neighborhood changes as a result of local shocks.

6.4 The Role of Policy Duration

Figure C.12 shows that the 20-year policy produces a larger decline in redevelopment in

treated neighborhoods, while the spillover to untreated neighborhoods is slightly smaller.

When the policy is short-lived, landlords in treated neighborhoods have stronger incentives

to delay redevelopment to avoid the tax. Meanwhile, landlords in untreated neighborhoods

do not increase redevelopment by much, as they anticipate that high-quality housing supply

will increase soon in the treated neighborhoods. Consequently, the 20-year policy generates

quicker and larger negative effects on average quality, rent, and income in treated neighbor-

hoods than the 50-year policy. This helps explain why even a small, temporary 606–Pilsen

teardown tax can have a large impact on demolitions.
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6.5 Discussions on Policy Implications

Although an optimal policy design is beyond the scope of the paper, we provide a discussion

on the source of market inefficiency and corresponding policy implications from our analy-

sis. In the model, the only inefficiency arises from endogenous amenities: households do not

internalize how their location choices affect neighborhood quality. This leads middle-income

households to over-sort into high-income neighborhoods, free-riding on amenities and gener-

ating negative externalities. Such an externality is analogous to fiscal externalities that arise

from the provision of local, congested public goods (Calabrese et al., 2012).

A welfare-improving policy would therefore discourage low-income households’ entry into

high-income neighborhoods and compensate affected households through monetary transfers,

analogous to the optimal spatial policy framework of Fajgelbaum and Gaubert (2020). With

moving costs, the optimal policy will also need to balance the gain from reallocation against

the moving costs associated with it. However, such a policy is unlikely to be politically

feasible: it would increase income segregation within the city and carry adverse long-run

social consequences. In the space of housing policy, this logic points toward incentivizing

redevelopment in high-income neighborhoods rather than restricting it in low-income ones.

Without endogenous amenities, no policy can achieve a Pareto improvement. Even then,

waves of redevelopment generate sizable distributional effects that may warrant policy atten-

tion. When households are mobile with moving costs, redevelopment benefits high-income

households and harms local low-income households.19 Taxing redevelopment is not desirable

in the long run, since high-quality housing eventually filters down to low-income households.

A redistributive policy should therefore avoid distorting the housing supply margin. A better

policy option is to compensate displaced households — for example through housing vouchers

— rather than restrict redevelopment.

7 Conclusion

Housing redevelopment is a major source of new housing supply in dense urban areas, yet

its welfare consequences remain understudied. At the city level, expanding the stock of

high-quality units can generate a “trickle-down” effect, reducing housing rent across the

quality distribution. However, as housing redevelopment is spatially concentrated, waves

of new construction often trigger gentrification and displacement, resulting in welfare losses

on incumbent households. In addition, housing is durable and depreciates over time, so

redevelopment persistently alters citywide housing supply and generates long-lasting effects.

19When households are immobile, replacing low-quality with high-quality housing reduces rents across the
quality distribution in the neighborhood (Nathanson, 2025).
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Taken together, these features make the welfare implications of redevelopment difficult to

analyze.

In this paper, we develop a dynamic general equilibrium framework to study the welfare

consequences of housing redevelopment. We embed an assignment model — which tractably

matches heterogeneous households to housing units within each neighborhood and delivers a

local pricing function — into a quantitative spatial model that allows income sorting across

neighborhoods. We further incorporate forward-looking landlords who endogenously choose

redevelopment timing, together with quality depreciation over time. We theoretically show

that housing redevelopment induces income sorting through its effect on the pricing function.

In addition, the model allows neighborhood amenities to respond to income, capturing further

neighborhood dynamics induced by redevelopment.

We apply the model to evaluate a three-year teardown tax implemented in two neigh-

borhoods in Chicago, designed to curb redevelopment in low-income, gentrifying areas and

protect incumbent residents. Using a spatial difference-in-differences design, we show empir-

ically that the policy substantially reduced housing teardowns and population displacement

in the targeted neighborhoods. The model counterfactuals reveal richer general-equilibrium

effects. The policy induces out-migration of high-income households from the treated areas,

thereby increasing redevelopment and rents in untreated neighborhoods. As a result, low-

income households gain, while middle- and high-income households suffer from welfare losses,

with the largest losses borne by the middle of the income distribution. Overall, we conclude

that the teardown tax act as redistributive instruments that are net welfare-decreasing, pri-

marily because they induce costly relocations and worsens amenities by decreasing average

income in the city.

Although we focus on a specific form of anti-redevelopment policy, the model is well

suited to study the long-run consequences of a broad class of housing policies that involves

changing the local housing quality distribution. Some examples are the Low-Income Housing

Tax Credit and demolition of public housing. Finally, we deliberately abstract from modeling

the labor market and commuting choices to keep the model tractable. Future work can

incorporate these aspects to study the how local labor market shocks affect housing quality

across the city, as well as how the housing quality distribution affects the spatial distribution

of productive activities through its impact on income sorting.
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Appendix

A Additional model details

A.1 Proof of Proposition 1

To prove Proposition 1, note that it is sufficient to show that

∂ logU(x2, z)

∂z
<

∂ logU(x1, z)

∂z

for every z (so that lower income households derive relatively higher utility in location x2).

By the envelope theorem, we can express each derivative as

∂ logU(x, z)

∂z
=

∂

∂z
max

q
log qα(z − P (q, x))1−α = (1− α)

1

z − P (q⋆(x, z), x)

where q⋆ := argmaxqq
α(z − P (q, x))1−α. Note that this means

∂ logU(x2, z)

∂z
<

∂ logU(x1, z)

∂z
⇐⇒ P (q⋆(x2, z), x2) < P (q⋆(x1, z), x1)

for all income levels z. However, it can be easily shown that the quality choice solving the

maximization problem q⋆ must solve the equation

P (q, x) =
α

α + (1− α)ϵ(q, x)
z

where ϵ := ∂ logP (q,x)
∂ log q

is the price elasticity of quality. If ϵ(q, x) is always greater in x2 for any

quality choice q⋆, then households of all income levels spend less on housing in x2. This is

sufficient to complete the proof.

A.2 The Incentives to Redevelop to High Quality Blueprints

In this section of the appendix, we consider how the structure of the pricing function affects

the probability of redevelopment into high quality segments. In settings with no depreciation

and when the probability of redevelopment is low (i.e. in instances where construction costs

are high) we prove that neighborhoods with higher rent gradients experience more redevel-

opment to high quality segments. This is because the returns to holding high quality housing

are greater relative to low quality housing when rent gradients are high.

Proposition 2 Consider two neighborhoods x1 and x2 that are identical but for the following:

there exists a steady-state equilibrium pricing function P (q, x) and a focal quality level q⋆ such

that
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P (q, x1) > P (q, x2) for all q < q⋆

P (q, x1) < P (q, x2) for all q > q⋆

That is, the rent gradient is larger in neighborhood x2 and the pricing functions exhibit a

single-crossing property. Then, when δ = 0 and in the limit where the probability of redevel-

opment is low,

q̂ > q⋆ and q < q⋆ =⇒ PR
x1
(q, h, q̂) < PR

x2
(q, h, q̂) (A.1)

where PR
x is the probability of redevelopment in neighborhood x. That is, there is more

redevelopment that accompanies quality upgrading in neighborhood x2.

Proof.

First, we consider a smooth, once-differentiable path between the two pricing functions in

either neighborhood P (q, x1) and P (q, x2) indexed by s ∈ [0, 1]. That is, Ps(q) is continuous

and differentiable in (q, s) and and P0(q) = P (q, x1) with P1(q) = P (q, x2). For every s,

assume ∂P
∂s

< 0 if and only if q < q⋆. Such a smooth path is guaranteed to exist that satisfies

all properties.

Fix any q, q̂ such that q < q⋆ and q̂ > q⋆ and assume (for simplicity) a finite quality space

Q. For the purposes of this proof, we can write the average value function of a firm (average

taken with respect to idiosyncratic fixed cost shocks) as solving the recursive equation:

Vs(q, h, q̂) =
1

σc

log

[
eσcV N

s (q,h) + eσcV R
s (q̂)

]
with (assuming δ = 0)

V N
s (q, h) = Ps(q)h+ β

∑
q̃∈Q′

Vs(q, h, q̃)g(q̃)

V R
s (q̂) = max

h
Ps(q̂)h− Ωq̂hγ − Fq̂ + β

∑
q̃∈Q′

Vs(q̂, h, q̃)g(q̃)

where g(.) is the pdf of the blueprint distribution, and noting that V is continuous in δ, we

can work in this limiting case. The log-odds ratio of the probability of redevelopment can

also be expressed as follows:

log
PR
s (q, h, q̂)

1− PR
s (q, h, q̂)

= σc[V
R
s (q̂)− V N

s (q, h)]
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It is sufficient to show that the log odds ratio is strictly increasing in s to complete the

proof. This is the objective in what follows. Note that the Envelope Theorem implies

∂V R
s (q̂)

∂s
− ∂V N

s (q, h)

∂s
=

∂Ps(q̂)

∂s
h⋆
s(q̂)−

∂Ps(q)

∂s
h︸ ︷︷ ︸

One-period rent

+ β
∑
q̃∈Q′

g(q̃)

[
∂Vs(q̂, h

⋆
s(q), q̃)

∂s
− ∂Vs(q, h, q̃)

∂s

]
︸ ︷︷ ︸

continuation values

where h⋆
s(q̂) > 0 solves the maximization problem in V R (where we applied the envelope

theorem). To prove the statement, it is then sufficient to show that the “continuation values”

term is strictly positive, since the“one period rent” term is strictly positive by the assumptions

of q < q⋆, q̂ > q⋆, and the antecedents of the proof, that is, ∂Ps(q)
∂s

> 0 if and only if q < q̄.

To this end, we define the average change in the value function (average taken with respect

to the blueprint distribution)

EVs(q, h) =
∑
q̃∈Q′

g(q̃)
∂Vs(q, h, q̃)

∂s

By deriving the derivative of Vs(q, h, q̂) with respect to s, it is simple to show that EVs(q, h)

is defined recursively by

EVs(q, h) =

[∑
q̃∈Q′

(1− PR
s (q, h, q̃))g(q̃)

(
∂Ps(q)

∂s
h+ βEVs(q, h)

)]
+[∑

q̃∈Q′

PR
s (q, h, q̃)g(q̃)

(
∂Ps(q̃)

∂s
h⋆
s(q̃) + βEVs(q̃, h

⋆
s(q̃))

)]

(we also applied the Envelope theorem again). Define PRT
s (q, h) :=

∑
q̃∈Q′ PR

s (q, h, q̃)g(q̃) as

the average probability of redevelopment across all blueprint draws. This statement can be

simplified to

EVs(q, h) =
1− PRT

s (q, h)

1− β(1− PRT
s (q, h))

∂Ps(q)

∂s
h︸ ︷︷ ︸

Change in Discounted rents on current structure

+ (A.2)

∑
q̃∈Q′ PR

s (q, h, q̃)g(q̃)

(
∂Ps(q̃)

∂s
h⋆
s(q̃) + βEVs(q̃, h

⋆
s(q̃))

)
1− β(1− PRT

s (q, h))︸ ︷︷ ︸
Discounted profits from redevelopment option value

(A.3)
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Next, we take the limit as Fq̂ → ∞ (a pointwise limit such that fixed costs become arbitrarily

large over all blueprint draws). Importantly, h⋆
s is a constant function of Fq̂, so we need not

worry about how the optimal number of constructed units varies with fixed costs. Then, we

have that

PR
s (q, h, q̃) → 0

uniformly for every (q, q̃) and a fixed h. This directly implies that

lim
Fq̂→∞

EVs(q, h) =
1

1− β

∂Ps(q)

∂s
h

uniformly for all s ∈ [0, 1] and q ∈ Q for a given h. Uniform convergence over (s, q, h) follows

from assuming h takes on values in a bounded, closed, and strictly positive interval. (One

such interval can be chosen such that all maximizers h⋆
s(q̂) are interior solutions. This is

because we assumed a finite quality space and continuity of prices in s; and thus bounded

prices. Moreover, we have convex costs of housing unit construction that become arbitrarily

large as h → ∞ and small as h → 0).

Deriving the limiting case, we can complete the proof. We know that, for q < q⋆ im-

plies ∂Ps

∂s
< 0, so limFq̂→∞EVs(q, h) = 1

1−β
∂Ps(q)

∂s
h < 0. Symmetrically, q̂ > q⋆ implies

limFq̂→∞EVs(q̂, h
⋆
s(q̂)) > 0. Substituting into the expression for V R − V N above, we can

prove V R
s − V N

s > 0 for all (s, q, h) which is sufficient to prove that PR
s (q, h, q̂) is strictly

increasing in s when fixed costs are large and q < q⋆ < q̂. This completes the proof.

Our proof of Proposition 2 relies on a stylized environment where redevelopment probabili-

ties are low and there is no depreciation. How crucial are these assumptions? First, we stress

the point that these assumptions are empirically relevant – both depreciation and redevelop-

ment rates we measure empirically are each less that 0.3% per year. Second, low probabilities

of redevelopment are necessary to establish the proof because of complications arising from

the option value of future redevelopment. Differences in rent gradients may change how valu-

able the expected value of future redevelopment is (with the expectation taken with respect

to the entire distribution of future blueprint draws). This corresponds to the additional term

A.3 that prevents ascribing a signed value to EVs(q, h). When redevelopment probabilities

are low, this option value is unimportant and can be ignored.
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With non-zero depreciation, a landlord also needs to consider how a steeper rent gradient

will affect returns on housing in the future as the structure they intend to build depreciates

down the quality ladder. The condition for this proof becomes:

∞∑
t=0

βt∂Ps[(1− δ)tq]

∂s
h <

∞∑
t=0

βt∂Ps[(1− δ)tq̂]

∂s
h⋆
s(q̂)

for q < q⋆ < q̂ and all s (and redevelopment probabilities are low). That is, the discounted

stream of rents for a high quality development need to be greater than that of low quality

below the focal quality q⋆. Higher rent gradients make this condition more likely to hold,

especially when either 1) β → 0 (high discounting) or 2) δ → 0 (slow depreciation as in

Proposition 2).

A.3 Solution Algorithm

We discretize the quality space Q into a grid Q = {q1, q2, ..., qNq}, where q1 = q̄ and qn =

(1− δ)qn+1, n ∈ {1, 2, ..., Nq − 1}. The model is solved iteratively in the following steps:

1. Start by solving for the long run steady state equilibria. The policies we report in this

paper are temporary, so this is just the baseline steady state.

2. Solve for the dynamic equilibrium up to a pre-specified terminal period T . Assume all

value functions at the terminal period are given by the steady state value functions

solved above. To do this, proceed in the following way:

(a) Guess the entire stream of the pricing function {Pt(q, x)}∀t,q,x.

(b) Given the pricing function, solve the household’s problem by equations (3) and

(6). This generates the housing demand {Lt(q, x, z)}∀t,q,x,z.

(c) Given the pricing function, solve the landlord’s problem backwardly (from t = T

to t = 1)in the following steps:

i. In period T , set VT (siT , q̂iT ) to be the steady state value function solved in

Step 1.

ii. In period t < T , solve the problem given by equation (10). The value functions

Vit+1(·, ·) are solved from the landlord’s problem in the period t+ 1.

A. Calculate the value of not redeveloping the parcel, net of the idiosyncratic

cost shock:

V N
it (sit, q̂it) = Pt(qit, x)hit + βEq̂it+1

Vi,t+1 (qit+1, hit, q̂i,t+1) .
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B. Calculate the value of redeveloping the parcel, net of the idiosyncratic

cost shock:

V R
it (sit, q̂it) = −Ci(q̂it, h

∗
it(q̂it, x))+Pt(q̂it, x)h

⋆
it(q̂it, x)+βEq̂it+1

Vi,t+1

(
q̂Dit , h

∗
it(q̂it, x), q̂i,t+1

)
,

where h∗
i,t+1(q̂it, x) = argmaxhi,t

{
−Ci(q̂it, hi,t+1) + βEq̂it+1

Vi,t+1 (q̂it, hi,t+1, q̂i,t+1)
}
.

Note that due to full irreversiblility of housing investment, the optimal

housing unit h∗
i,t+1(q̂it, x) conditional on redevelopment is independent of

the current housing characteristics sit.

C. Calculate the share of parcels that choose to redevelop:

PR(sit, q̂it) =
exp

(
V R
it (sit, q̂it)

)1/σc

exp (V N
it (sit, q̂it))

1/σc + exp (V R
it (sit, q̂it))

1/σc
.

(d) Given the landlord’s optimal redevelopment decisions {p(sit, q̂it)}i,t,s,q̂ and {h∗
it(q̂it)}i,t,q̂

solved in Step 3, and the initial mass of housing by quality across neighborhoods

{si0}i, calculate the housing supply Ht(q, x) forwardly, from t = 1 to t = T :

Ht(q, x) =
∑
i∈Ix

1{qi,t−1 =
1

1− δ
q} (1− p(sit−1, q̂it−1))hit−1 +

∑
i∈Ix

p(sit−1, q̂it−1) · h∗
it(q̂it−1, x)+

1{q = qmin}
∑
i∈Ix

1{qi,t−1 = q} (1− p(sit−1, q̂it−1))hit−1.

(e) Check the market clearing condition:∑
z∈Z

Lt(q, x, z) = Ht(q, x), ∀t ∈ {1, 2, ..., T}, q ∈ Q, x ∈ X

i. if the market clearing condition is satisfied, stop the iteration.

ii. if not satisfied, update the pricing function {Pt(q, x)}∀t,q,x in a way propor-

tional to excess demand; and go back to step 2.

B Calibration and estimation

In this appendix, we provide supplementary material for the empirical implementation of our

model.
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B.1 Housing Supply Estimation

B.1.1 The Housing Unit Cost Elasticity γ

We start with the estimation of the housing unit cost elasticity parameter γ. Conditional on

redevelopment, the landlord chooses hit to maximize profits, that is:

hit = argmaxh {− (Ωx · qit · hγ)− Fqx + Vi,t (q̂it, h)} . (B.1)

where Vit(qit, h) = P (qit, x)h + βEq̂it+1, ξ⃗it+1
Vi,t+1

(
[1− δ]qit, h, q̂i,t+1, ξ⃗it+1

)
is the value of

the building cum-dividend (including the current period’s rents). The first-order condition

of this problem is

γΩx · qithγ−1 + β
∂Vit (qit, h)

∂h
= 0. (B.2)

Taking the logarithm and rearranging the first-order condition, we can obtain

log hit = − 1

(γ − 1)
(log γ − log β) +

1

(γ − 1)

(
log

∂Vit (q̂it, h)

∂hit

− log q̂it

)
− 1

(γ − 1)
log Ωx

(B.3)

Assuming that quality is measured with a measurement error and that there are additional

unobserved marginal cost shocks ϵγ at the parcel level, we can derive the estimating equation

(16). We find that, in our model calibration, the marginal value of adding an additional

building is almost exactly constant. For this reason, we approximate ∂Vit(qit,h)
∂h

in this equation

with the average value per housing unit V (q, h)/h. This derives Equation (16).

B.1.2 Estimates of total construction costs

We use each of the estimated and internally calibrated parameters of the housing production

function to construct model-based measures of total and fixed construction costs. We report

these estimates for each neighborhood and blueprint quality level in Figure B.1.
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Figure B.1: Model-based construction costs; constructed using estimated and internally calibrated param-
eters in Section 5. The support of the blueprint distribution represent upper bounds of the 3 quality tertiles
observed in the data. For example, the highest quality blueprint corresponds to the 99th percentile of housing
quality, while the lowest quality blueprint is the 33rd percentile. The left scale is associated with the first two
blueprint tertiles. The right scale is associated with the remaining tertile. Fixed costs take the lion’s share of
total construction costs. Construction costs for the highest quality blueprints are exponentially greater in all
neighborhoods. Higher income neighborhoods tend to have greater fixed and variable costs of construction
for any given quality blueprint. However, there is considerable noise in both fixed and variable costs for
neighborhoods of identical incomes.
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C Additional Figures and Tables

Table C.1: Balance Test between the Buffer Areas within and outside the Treatment Bound-
ary

Treated Area Control Area Difference

Variable Mean SD Mean SD Estimate SE

Panel A: Assessment data (2020)
Bedrooms 4.57 (2.35) 4.38 (2.19) 0.20 (0.24)
Bathrooms 2.51 (1.26) 2.41 (1.17) 0.10 (0.15)
Unit Sq. ft. 2423.36 (1433.72) 2337.09 (1369.41) 86.28 (207.49)
Land Sq. ft. 3201.29 (899.91) 3198.47 (1104.07) 2.81 (233.91)
Single Family 0.34 (0.47) 0.41 (0.49) -0.07 (0.09)
Building Units 2.14 (1.20) 1.97 (1.16) 0.16 (0.23)
Build Year 1909.87 (39.14) 1916.59 (38.35) -6.72 (8.35)
Panel B: Transaction data (2015–2020)
Bedrooms 4.09 (2.17) 3.71 (2.09) 0.38 (0.25)
Bathrooms 2.56 (1.21) 2.46 (1.19) 0.10 (0.09)
Unit Sq. ft. 2218.20 (1285.94) 2025.18 (1128.98) 193.01 (170.74)
Land Sq. ft. 3665.93 (2681.31) 3825.20 (2193.57) -159.27 (289.06)
Single Family 0.44 (0.50) 0.50 (0.50) -0.06 (0.11)
Building Units 2.72 (2.83) 3.51 (3.77) -0.79*** (0.10)
Build Year 1929.76 (52.28) 1940.91 (51.00) -11.15 (11.33)
log(Sale Price) 12.81 (0.62) 12.85 (0.66) -0.04 (0.03)
log(Sale Price / Unit Sq. ft.) 5.23 (0.58) 5.35 (0.60) -0.12 (0.09)
Panel C: Rental data (2015–2020)
Bedrooms 2.24 (0.86) 2.18 (0.76) 0.06 (0.06)
Bathrooms 1.33 (0.56) 1.43 (0.58) -0.10 (0.07)
Unit Sq. ft. 1130.35 (416.91) 1160.16 (385.79) -29.81 (49.49)
Build Year 1898.49 (26.73) 1909.75 (32.40) -11.26 (8.01)
log(Rent) 7.37 (0.33) 7.49 (0.33) -0.12** (0.06)
log(Rent / Unit Sq. ft.) 0.40 (0.28) 0.48 (0.29) -0.08*** (0.02)

Note: Standard errors are clustered by 500-meter buffer. * p<0.1, ** p<0.05, *** p<0.01.
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Table C.2: Balance Test: Treated Neighborhoods versus the Rest of the City

Treated Area The Rest of Chicago Difference

Variable Mean SD Mean SD Estimate SE

Panel A: Assessment data (2020)
Bedrooms 4.55 (2.33) 3.75 (1.89) 0.80*** (0.00)
Bathrooms 2.49 (1.25) 1.91 (1.08) 0.58*** (0.00)
Unit Sq. ft. 2393.72 (1413.87) 1875.43 (1235.09) 518.29*** (0.00)
Land Sq. ft. 3217.97 (896.78) 3991.24 (1830.01) -773.27*** (0.00)
Single Family 0.34 (0.47) 0.70 (0.46) -0.36*** (0.00)
Building Units 2.12 (1.19) 1.46 (0.93) 0.65*** (0.00)
Build Year 1909.76 (38.57) 1932.63 (31.00) -22.87*** (0.00)
Panel B: Transaction data (2015–2020)
Bedrooms 4.05 (1.95) 3.37 (1.30) 0.68*** (0.00)
Bathrooms 2.47 (1.09) 1.83 (0.87) 0.64*** (0.00)
Unit Sq. ft. 2103.75 (942.36) 1670.15 (780.42) 433.60*** (0.00)
Land Sq. ft. 3495.19 (1234.90) 5214.29 (2128.79) -1719.10*** (0.00)
Single Family 0.43 (0.50) 0.84 (0.36) -0.41*** (0.00)
Building Units 2.60 (2.61) 1.75 (2.27) 0.84*** (0.00)
Build Year 1926.70 (51.02) 1948.95 (32.54) -22.24*** (0.00)
log(Sale Price) 12.78 (0.62) 12.30 (0.81) 0.48*** (0.00)
log(Sale Price / Unit Sq. ft.) 5.22 (0.58) 4.96 (0.71) 0.26*** (0.00)
Panel C: Rental data (2015–2020)
Bedrooms 2.12 (0.94) 1.79 (1.06) 0.33*** (0.00)
Bathrooms 1.32 (0.57) 1.34 (0.57) -0.02*** (0.00)
Unit Sq. ft. 1115.04 (514.36) 1052.04 (517.10) 62.99*** (0.00)
Build Year 1899.03 (27.20) 1916.11 (33.29) -17.08*** (0.00)
log(Rent) 7.41 (0.36) 7.47 (0.47) -0.07*** (0.00)
log(Rent / Unit Sq. ft.) 0.52 (0.33) 0.67 (0.43) -0.15*** (0.00)

Note: Standard errors are clustered at two levels: the treatment area and the remainder of the city.
* p<0.1, ** p<0.05, *** p<0.01.
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Table C.3: Event Study Results: Demolition and Construction Permits

Demolition Construction

Buffer Width 0.25km 0.5km 1km 0.25km 0.5km 1km

(1) (2) (3) (4) (5) (6)

Treat ×
2009–2011 -0.000 -0.002 -0.002 0.000 -0.002 -0.003∗

(0.003) (0.002) (0.002) (0.002) (0.002) (0.002)

2012–2014 0.002 0.001 -0.002 0.004 0.003 0.000
(0.004) (0.003) (0.002) (0.003) (0.002) (0.002)

2015–2017 0.005 0.001 0.001 0.003 -0.000 0.000
(0.004) (0.003) (0.002) (0.004) (0.003) (0.002)

2018–2020 - - - - - -

2021–2023 0.002 -0.004∗∗ -0.004∗∗ 0.001 -0.003 -0.004∗∗

(0.003) (0.002) (0.002) (0.003) (0.002) (0.002)

Building FE Yes Yes Yes Yes Yes Yes
Period × Neighborhood FE Yes Yes Yes Yes Yes Yes
Fxt(Lon,Lat) Yes Yes Yes Yes Yes Yes
Num. obs. 30,985 58,055 95,025 30,985 58,055 95,025

The table shows the estimation results of equation (1). This specification includes the
spatial pricing dynamic controls Fxt(Lon,Lat) discussed in Section 3, and excludes unit-
specific controls Xit and fixed effects. Standard errors are clustered by Building ID. *
p<0.1, ** p<0.05, *** p<0.01.
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Table C.4: Event-Study Results: Rent and Sale Price

Log Rent Log Sale Price

Buffer Width 0.25km 0.5km 1km 0.25km 0.5km 1km

(1) (2) (3) (4) (5) (6)

Treat ×
2018 -0.012 -0.006 0.027 0.015 0.024 0.072∗

(0.017) (0.029) (0.016) (0.059) (0.040) (0.040)

2019 -0.001 -0.001 -0.001 0.015 0.008 0.027
(0.013) (0.009) (0.009) (0.059) (0.038) (0.035)

2020 - - - - - -

2021 -0.001 -0.013 0.001 -0.043 -0.011 0.003
(0.013) (0.009) (0.007) (0.043) (0.029) (0.024)

2022 0.002 0.001 0.003 -0.008 -0.053 -0.048
(0.013) (0.010) (0.009) (0.065) (0.040) (0.029)

2023 0.001 -0.005 0.001 0.039 -0.004 -0.004
(0.013) (0.010) (0.009) (0.073) (0.040) (0.031)

Unit FE Yes Yes Yes No No No
Unit Characteristics Yes Yes Yes Yes Yes Yes
Period × Neighborhood FE Yes Yes Yes Yes Yes Yes
Fxt(Lon,Lat) Yes Yes Yes Yes Yes Yes
Num. obs. 8,505 13,997 21,889 2,463 4,507 7,671

Note: The table shows the estimation results of equation (1). All regressions control for a
neighborhood-time-specific polynomial of longitude and latitude. Fxt(Lon,Lat), and excludes unit-
specific controls Xit. Rent regressions cluster standard errors by unit; sales price regressions use
Conley standard errors. * p<0.1, ** p<0.05, *** p<0.01.
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Table C.5: Event Study Results: Displacement

Neighborhood-level Address-level

Buffer Width 0.25km 0.5km 1km 0.25km 0.5km 1km

(1) (2) (3) (4) (5) (6)

Treat ×
2018 0.005 -0.023 -0.020 -0.007 -0.024 -0.027

(0.028) (0.022) (0.018) (0.030) (0.025) (0.020)

2019 0.039 -0.003 -0.006 0.034 -0.007 -0.009
(0.029) (0.023) (0.017) (0.029) (0.024) (0.018)

2020 - - - - - -

2021 0.053 0.028 0.007 0.055 0.030 0.008
(0.032) (0.028) (0.022) (0.034) (0.030) (0.024)

2022 0.044 -0.015 -0.002 0.055 -0.009 -0.002
(0.035) (0.029) (0.021) (0.035) (0.031) (0.022)

2023 0.011 -0.029 -0.039∗ 0.021 -0.031 -0.041∗

(0.035) (0.026) (0.020) (0.035) (0.029) (0.022)

Individual FE Yes Yes Yes Yes Yes Yes
Period × Neighborhood FE Yes Yes Yes Yes Yes Yes
Fxt(Lon,Lat) Yes Yes Yes Yes Yes Yes
Num. obs. 4,194 7,775 13,809 4,194 7,775 13,809

Note: The table shows the estimation results of equation (1) for the displacement outcomes.
Neighborhood-level displacement is a dummy variable equal to one if an individual moves out of
the rings of corresponding buffer widths, while address-level displacement equals one if an individual
moves out of their previous address. Standard errors are clustered by individual. * p<0.1, ** p<0.05,
*** p<0.01.
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Table C.6: Change in Building Age and Income: First Stage

(1) (2)

∆ Median Building Age ∆ Median Building Age

Bartik×Median Building Age -22.705*** -22.816***
(4.143) (3.667)

Initial Median Building Age 0.007*** 0.004*
(0.002) (0.002)

∆ log Employment 0.108 0.049
(0.096) (0.081)

Initial log Income -0.375***
(0.118)

Num. Obs. 2,280 2,268
R2 0.114 0.140
KP F-Stat 29.7 38.2

Note: All regressions are weighted by the number of initial number of housing units. Change in
building age is normalized to have a standard deviation of 1 year (originally 3.7 years). Standard
errors are clustered at the official Chicago neighborhood level. *** p<0.01, ** p<0.05, * p<0.1.

Table C.7: Redevelopment Across High-income and Low-income neighborhoods

(1) (2) (3) (4)

log Units log Sqft ∆ log Units ∆ log Sqft

log Income -0.108*** 0.161*** -0.243*** 0.054**

(0.014) (0.021) (0.028) (0.022)

Num. Obs. 24,621 24,419 6,691 6,605

R2 0.027 0.044 0.038 0.002

Note: This table shows the regression of housing measures on
neighborhood-level income for redeveloped buildings. neighborhood is de-
fined as a census block group. Robust standard errors in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
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Table C.8: Hedonic Regression Results

(1) (2) (3)

Building age -0.0020 -0.0019 -0.0021
Bedrooms 0.1477 0.1571 0.1572
Bedrooms2 -0.0116 -0.0200 -0.0129
Bathrooms 0.1789 0.1715 0.1637
Bathrooms2 -0.0201 -0.0201 -0.0199
Unit area (sq. ft.) 0.2825 0.2837 0.2880
Lot area (sq. ft.) -0.0071 0.0061 -0.0120
Lot × unit area 0.0105 -0.0068 -0.0061
Single-family dwelling 0.4692 0.7526 0.8297
Medium multifamily building 0.0512 0.0512 0.0593
Construction quality = Poor -17.6572 -19.3818 -14.0882
Construction quality = Deluxe 0.0696 0.0601 0.0542
Exterior wall: Frame/Masonry -0.0552 -0.0396 -0.0242
Exterior wall: Frame 0.0402 0.0436 0.0407
Exterior wall: Stucco -0.0397 -0.0483 -0.0372
Heating: Hot water/steam -0.0139 -0.0047 -0.0939
Heating: Electric -0.0028 -0.0417 -0.0381
Heating: None -0.1507 -0.1548 -0.1475
Housing type: Two-story 0.0001 0.0114 0.0131
Housing type: Split-level 0.0048 0.0161 0.0161
Housing type: 1.5-story 0.0237 0.0314 0.0314
Enclosed porch (masonry) -0.0213 -0.0184 -0.0171
Enclosed porch (frame) -0.0007 0.0199 0.0201
Rank of prior sale price 0.0020
Rank of prior sale price2 -0.0000

Neighborhood FE Yes Yes Yes
Year FE Yes Yes Yes
Num. Obs. 17,212 11,333 11,333
R2 0.87 0.87 0.87

Notes: The table shows the results of the depreciation rate and the coefficient
of different housing characteristics from Equation 15. Columns (2) and (3)
are estimated using the subset of rental properties with observed past trans-
actions.
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Table C.9: Regressions of Estimated Pricing Function Parameters and Average Quality

Dependent variable: Log rent Elasticity FE Log avg quality

(1) (2) (3) (4)

Log(Building Age) -0.458∗∗∗ -0.201∗ -0.219∗∗∗ -0.258∗∗∗

(0.058) (0.104) (0.057) (0.032)

Log(Median Income) 0.355∗∗∗ 0.014 0.410∗∗∗ 0.125∗∗∗

(0.055) (0.099) (0.055) (0.031)

Num. obs. 23 23 23 23
R2 0.917 0.221 0.876 0.889

Note: The table uses the estimated pricing function parameters and housing quality
from equation (15). All regressions are conducted at the neighborhood group level and
are weighted by the number of housing units. Median income, median rent, and the
number of housing units information are obtained from the American Community Survey.
Building age is from the assessment data. Average quality is normalized to be 1 at the
city-level. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table C.10: First Stage Results of the Supply Elasticity Estimation

Dependent Variable: Log(Price Per Unit) Log(Adj. Price Per Unit)

(1) (2)

Bartik IV 8.17∗∗∗ 6.07∗∗

(2.25) (1.97)

Num. obs. 3304 3304
R2 0.24 0.25
F statistic 13.13 9.46

Note: The table shows the first-stage estimation results of the IV specification in
Table 2. Both columns control for log 2025 block group employment and 2010-2019
block group employment growth, and year-month fixed effects. Standard errors are
clustered at the census block group level. * p<0.1, ** p<0.05, *** p < 0.01.
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Figure C.1: Policy areas: The 606 and Pilsen neighborhoods

Note: The solid line represents the boundary of the city of Chicago. The upper-left area is 606-Trail; the
other area is Pilsen.
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(a) Demolition Permits (b) Construction Permits

Figure C.2: Average Demolition and Construction Rates within 500-meter Buffer Zones

Note: The figure shows the average three-year probabilities of an address issued a demolition or a construction
permit.

(a) Demolition Permits (b) Construction Permits

Figure C.3: Difference-in-Difference Results at Yearly Frequency

Note: The figure shows the estimation results of equation (1) at the one-year frequency with 500m buffer.
Robust standard errors clustered at the address level. Confidence intervals are at the 95% significance level.
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(a) Demolition Permits (b) All Permits

(c) Construction Cost

Figure C.4: Difference-in-Difference Results of Permit Processing Time and Estimated Cost
of Construction Permits

Note: The figure shows the spatial difference-in-difference results for log permit processing time (measured in
days) and log estimated project costs of construction permits. All dependent variables are in log. Confidence
intervals using heteroskedasticity-robust standard error are at the 95% significance level.
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(a) All Renovation Permits

(b) Addition Permits (c) Remodeling Permits

(d) Repairing Permits (e) Deconversion Permits

Figure C.5: Difference-in-Difference Results of Renovation Permits

Note: The figure shows the spatial difference-in-difference results for renovation permits. We use ChatGPT
to classify renovation permits into four types based on the work description: addition (adding an additional
housing unit), remodeling, repairing and deconversion. Standard errors are clustered at the address level.
Confidence intervals are at the 95% significance level.
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(a) Sales Price (Old) (b) Build Age (Sales) (c) Build Age (Rental)

Figure C.6: Difference-in-Difference Results on Sales Price of Old Properties, Building Age
of Sold and Rental Properties

Note: The figure shows the estimation results of equation (1) for log sales price of old properties and the
build age of sold and rental properties. Old buildings are defined as the ones greater or equal to 80 years
old. The regression for the rental properties building age (Panel (c)) uses a 250 meter buffer, as the 500
meter buffer sample violates the parallel trend assumption. All regressions include year-month-neighborhood-
specific polynomials of longitude and latitude to control for local market dynamics. Confidence intervals are
at the 95% significance level.
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Figure C.7: Distribution of Build Year of Redeveloped Buildings
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Figure C.8: A Map of Neighborhood Groups

Note: The solid lines represent our defined neighborhood groups; the dashed lines show the official neighbor-
hood boundaries set by the City of Chicago.

72



Figure C.9: Observed characteristics and estimated pricing functions across neighborhoods
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Figure C.10: Map of neighborhood groups by treatment status for the 50-year Teardown
Policy

Note: Treatment area represents 60% of the total population of the Chicago municipality (approximately
700,000 housing units). Untreated areas take the remaining share.
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Figure C.11: The Impact of a 50-year Teardown Policy on Land Value across Neighborhoods
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Figure C.12: The Impact of a 20-Year Teardown Policy on Housing Redevelopment, Rent,
Quality and Neighborhood Income
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